754 lines
22 KiB
Text
754 lines
22 KiB
Text
|
/**
|
||
|
*
|
||
|
* Copyright (C) Jacobs University Bremen
|
||
|
*
|
||
|
* @author Vaibhav Kumar Mehta
|
||
|
* @file normals.cc
|
||
|
*/
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <string>
|
||
|
#include <fstream>
|
||
|
#include <errno.h>
|
||
|
|
||
|
#include <boost/program_options.hpp>
|
||
|
|
||
|
#include <slam6d/io_types.h>
|
||
|
#include <slam6d/globals.icc>
|
||
|
#include <slam6d/scan.h>
|
||
|
#include "slam6d/fbr/panorama.h"
|
||
|
#include <scanserver/clientInterface.h>
|
||
|
|
||
|
#include <ANN/ANN.h>
|
||
|
#include "newmat/newmat.h"
|
||
|
#include "newmat/newmatap.h"
|
||
|
|
||
|
using namespace NEWMAT;
|
||
|
|
||
|
#ifdef _MSC_VER
|
||
|
#define strcasecmp _stricmp
|
||
|
#define strncasecmp _strnicmp
|
||
|
#else
|
||
|
#include <strings.h>
|
||
|
#endif
|
||
|
|
||
|
namespace po = boost::program_options;
|
||
|
using namespace std;
|
||
|
|
||
|
enum normal_method {AKNN, ADAPTIVE_AKNN, PANORAMA, PANORAMA_FAST};
|
||
|
|
||
|
/*
|
||
|
* validates normal calculation method specification
|
||
|
*/
|
||
|
void validate(boost::any& v, const std::vector<std::string>& values,
|
||
|
normal_method*, int) {
|
||
|
if (values.size() == 0)
|
||
|
throw std::runtime_error("Invalid model specification");
|
||
|
string arg = values.at(0);
|
||
|
if(strcasecmp(arg.c_str(), "AKNN") == 0) v = AKNN;
|
||
|
else if(strcasecmp(arg.c_str(), "ADAPTIVE_AKNN") == 0) v = ADAPTIVE_AKNN;
|
||
|
else if(strcasecmp(arg.c_str(), "PANORAMA") == 0) v = PANORAMA;
|
||
|
else if(strcasecmp(arg.c_str(), "PANORAMA_FAST") == 0) v = PANORAMA_FAST;
|
||
|
else throw std::runtime_error(std::string("normal calculation method ") + arg + std::string(" is unknown"));
|
||
|
}
|
||
|
|
||
|
/// validate IO types
|
||
|
void validate(boost::any& v, const std::vector<std::string>& values,
|
||
|
IOType*, int) {
|
||
|
if (values.size() == 0)
|
||
|
throw std::runtime_error("Invalid model specification");
|
||
|
string arg = values.at(0);
|
||
|
try {
|
||
|
v = formatname_to_io_type(arg.c_str());
|
||
|
} catch (...) { // runtime_error
|
||
|
throw std::runtime_error("Format " + arg + " unknown.");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Parse commandline options
|
||
|
void parse_options(int argc, char **argv, int &start, int &end, bool &scanserver, int &max_dist, int &min_dist, string &dir,
|
||
|
IOType &iotype, int &k1, int &k2, normal_method &ntype,int &width,int &height)
|
||
|
{
|
||
|
/// ----------------------------------
|
||
|
/// set up program commandline options
|
||
|
/// ----------------------------------
|
||
|
po::options_description cmd_options("Usage: calculateNormals <options> where options are (default values in brackets)");
|
||
|
cmd_options.add_options()
|
||
|
("help,?", "Display this help message")
|
||
|
("start,s", po::value<int>(&start)->default_value(0), "Start at scan number <arg>")
|
||
|
("end,e", po::value<int>(&end)->default_value(-1), "Stop at scan number <arg>")
|
||
|
("scanserver,S", po::value<bool>(&scanserver)->default_value(false), "Use the scanserver as an input method")
|
||
|
("format,f", po::value<IOType>(&iotype)->default_value(UOS),
|
||
|
"using shared library <arg> for input. (chose format from [uos|uosr|uos_map|"
|
||
|
"uos_rgb|uos_frames|uos_map_frames|old|rts|rts_map|ifp|"
|
||
|
"riegl_txt|riegl_rgb|riegl_bin|zahn|ply])")
|
||
|
("max,M", po::value<int>(&max_dist)->default_value(-1),"neglegt all data points with a distance larger than <arg> 'units")
|
||
|
("min,m", po::value<int>(&min_dist)->default_value(-1),"neglegt all data points with a distance smaller than <arg> 'units")
|
||
|
("normal,g", po::value<normal_method>(&ntype)->default_value(AKNN), "normal calculation method "
|
||
|
"(AKNN, ADAPTIVE_AKNN, PANORAMA, PANORAMA_FAST)")
|
||
|
("K1,k", po::value<int>(&k1)->default_value(20), "<arg> value of K value used in the nearest neighbor search of ANN or" "kmin for k-adaptation")
|
||
|
("K2,K", po::value<int>(&k2)->default_value(20), "<arg> value of Kmax for k-adaptation")
|
||
|
("width,w", po::value<int>(&width)->default_value(1280),"width of panorama image")
|
||
|
("height,h", po::value<int>(&height)->default_value(960),"height of panorama image")
|
||
|
;
|
||
|
|
||
|
po::options_description hidden("Hidden options");
|
||
|
hidden.add_options()
|
||
|
("input-dir", po::value<string>(&dir), "input dir");
|
||
|
|
||
|
po::positional_options_description pd;
|
||
|
pd.add("input-dir", 1);
|
||
|
|
||
|
po::options_description all;
|
||
|
all.add(cmd_options).add(hidden);
|
||
|
|
||
|
po::variables_map vmap;
|
||
|
po::store(po::command_line_parser(argc, argv).options(all).positional(pd).run(), vmap);
|
||
|
po::notify(vmap);
|
||
|
|
||
|
if (vmap.count("help")) {
|
||
|
cout << cmd_options << endl << endl;
|
||
|
cout << "SAMPLE COMMAND FOR CALCULATING NORMALS" << endl;
|
||
|
cout << " bin/normals -s 0 -e 0 -f UOS -g AKNN -k 20 dat/" <<endl;
|
||
|
cout << endl << endl;
|
||
|
cout << "SAMPLE COMMAND FOR VIEWING CALCULATING NORMALS IN RGB SPACE" << endl;
|
||
|
cout << " bin/show -c -f UOS_RGB dat/normals/" << endl;
|
||
|
exit(-1);
|
||
|
}
|
||
|
|
||
|
// read scan path
|
||
|
if (dir[dir.length()-1] != '/') dir = dir + "/";
|
||
|
|
||
|
}
|
||
|
///////////////////////////////////////////////////////
|
||
|
/////////////NORMALS USING AKNN METHOD ////////////////
|
||
|
///////////////////////////////////////////////////////
|
||
|
void calculateNormalsAKNN(vector<Point> &normals,vector<Point> &points, int k, const double _rPos[3] )
|
||
|
{
|
||
|
cout<<"Total number of points: "<<points.size()<<endl;
|
||
|
int nr_neighbors = k;
|
||
|
|
||
|
ColumnVector rPos(3);
|
||
|
for (int i = 0; i < 3; ++i)
|
||
|
rPos(i+1) = _rPos[i];
|
||
|
|
||
|
ANNpointArray pa = annAllocPts(points.size(), 3);
|
||
|
for (size_t i=0; i<points.size(); ++i)
|
||
|
{
|
||
|
pa[i][0] = points[i].x;
|
||
|
pa[i][1] = points[i].y;
|
||
|
pa[i][2] = points[i].z;
|
||
|
}
|
||
|
ANNkd_tree t(pa, points.size(), 3);
|
||
|
ANNidxArray nidx = new ANNidx[nr_neighbors];
|
||
|
ANNdistArray d = new ANNdist[nr_neighbors];
|
||
|
|
||
|
for (size_t i=0; i<points.size(); ++i)
|
||
|
{
|
||
|
ANNpoint p = pa[i];
|
||
|
//ANN search for k nearest neighbors
|
||
|
//indexes of the neighbors along with the query point
|
||
|
//stored in the array n
|
||
|
t.annkSearch(p, nr_neighbors, nidx, d, 0.0);
|
||
|
Point mean(0.0,0.0,0.0);
|
||
|
Matrix X(nr_neighbors,3);
|
||
|
SymmetricMatrix A(3);
|
||
|
Matrix U(3,3);
|
||
|
DiagonalMatrix D(3);
|
||
|
//calculate mean for all the points
|
||
|
for (int j=0; j<nr_neighbors; ++j)
|
||
|
{
|
||
|
mean.x += points[nidx[j]].x;
|
||
|
mean.y += points[nidx[j]].y;
|
||
|
mean.z += points[nidx[j]].z;
|
||
|
}
|
||
|
mean.x /= nr_neighbors;
|
||
|
mean.y /= nr_neighbors;
|
||
|
mean.z /= nr_neighbors;
|
||
|
//calculate covariance = A for all the points
|
||
|
for (int i = 0; i < nr_neighbors; ++i) {
|
||
|
X(i+1, 1) = points[nidx[i]].x - mean.x;
|
||
|
X(i+1, 2) = points[nidx[i]].y - mean.y;
|
||
|
X(i+1, 3) = points[nidx[i]].z - mean.z;
|
||
|
}
|
||
|
|
||
|
A << 1.0/nr_neighbors * X.t() * X;
|
||
|
|
||
|
EigenValues(A, D, U);
|
||
|
|
||
|
//normal = eigenvector corresponding to lowest
|
||
|
//eigen value that is the 1st column of matrix U
|
||
|
ColumnVector n(3);
|
||
|
n(1) = U(1,1);
|
||
|
n(2) = U(2,1);
|
||
|
n(3) = U(3,1);
|
||
|
ColumnVector point_vector(3);
|
||
|
point_vector(1) = p[0] - rPos(1);
|
||
|
point_vector(2) = p[1] - rPos(2);
|
||
|
point_vector(3) = p[2] - rPos(3);
|
||
|
point_vector = point_vector / point_vector.NormFrobenius();
|
||
|
Real angle = (n.t() * point_vector).AsScalar();
|
||
|
if (angle < 0) {
|
||
|
n *= -1.0;
|
||
|
}
|
||
|
n = n / n.NormFrobenius();
|
||
|
normals.push_back(Point(n(1), n(2), n(3)));
|
||
|
}
|
||
|
|
||
|
delete[] nidx;
|
||
|
delete[] d;
|
||
|
annDeallocPts(pa);
|
||
|
}
|
||
|
////////////////////////////////////////////////////////////////
|
||
|
/////////////NORMALS USING ADAPTIVE AKNN METHOD ////////////////
|
||
|
////////////////////////////////////////////////////////////////
|
||
|
void calculateNormalsAdaptiveAKNN(vector<Point> &normals,vector<Point> &points,
|
||
|
int kmin, int kmax, const double _rPos[3])
|
||
|
{
|
||
|
ColumnVector rPos(3);
|
||
|
for (int i = 0; i < 3; ++i)
|
||
|
rPos(i+1) = _rPos[i];
|
||
|
|
||
|
cout<<"Total number of points: "<<points.size()<<endl;
|
||
|
int nr_neighbors;
|
||
|
ANNpointArray pa = annAllocPts(points.size(), 3);
|
||
|
for (size_t i=0; i<points.size(); ++i)
|
||
|
{
|
||
|
pa[i][0] = points[i].x;
|
||
|
pa[i][1] = points[i].y;
|
||
|
pa[i][2] = points[i].z;
|
||
|
}
|
||
|
ANNkd_tree t(pa, points.size(), 3);
|
||
|
|
||
|
Point mean(0.0,0.0,0.0);
|
||
|
double temp_n[3],norm_n = 0.0;
|
||
|
double e1,e2,e3;
|
||
|
|
||
|
for (size_t i=0; i<points.size(); ++i)
|
||
|
{
|
||
|
Matrix U(3,3);
|
||
|
ANNpoint p = pa[i];
|
||
|
for(int kidx = kmin; kidx < kmax; kidx++)
|
||
|
{
|
||
|
nr_neighbors=kidx+1;
|
||
|
ANNidxArray nidx = new ANNidx[nr_neighbors];
|
||
|
ANNdistArray d = new ANNdist[nr_neighbors];
|
||
|
//ANN search for k nearest neighbors
|
||
|
//indexes of the neighbors along with the query point
|
||
|
//stored in the array n
|
||
|
t.annkSearch(p, nr_neighbors, nidx, d, 0.0);
|
||
|
mean.x=0,mean.y=0,mean.z=0;
|
||
|
//calculate mean for all the points
|
||
|
for (int j=0; j<nr_neighbors; ++j)
|
||
|
{
|
||
|
mean.x += points[nidx[j]].x;
|
||
|
mean.y += points[nidx[j]].y;
|
||
|
mean.z += points[nidx[j]].z;
|
||
|
}
|
||
|
mean.x /= nr_neighbors;
|
||
|
mean.y /= nr_neighbors;
|
||
|
mean.z /= nr_neighbors;
|
||
|
|
||
|
Matrix X(nr_neighbors,3);
|
||
|
SymmetricMatrix A(3);
|
||
|
DiagonalMatrix D(3);
|
||
|
|
||
|
//calculate covariance = A for all the points
|
||
|
for (int j = 0; j < nr_neighbors; ++j) {
|
||
|
X(j+1, 1) = points[nidx[j]].x - mean.x;
|
||
|
X(j+1, 2) = points[nidx[j]].y - mean.y;
|
||
|
X(j+1, 3) = points[nidx[j]].z - mean.z;
|
||
|
}
|
||
|
|
||
|
A << 1.0/nr_neighbors * X.t() * X;
|
||
|
|
||
|
EigenValues(A, D, U);
|
||
|
|
||
|
e1 = D(1);
|
||
|
e2 = D(2);
|
||
|
e3 = D(3);
|
||
|
|
||
|
delete[] nidx;
|
||
|
delete[] d;
|
||
|
|
||
|
//We take the particular k if the second maximum eigen value
|
||
|
//is at least 25 percent of the maximum eigen value
|
||
|
if ((e1 > 0.25 * e2) && (fabs(1.0 - (double)e2/(double)e3) < 0.25))
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
//normal = eigenvector corresponding to lowest
|
||
|
//eigen value that is the 1rd column of matrix U
|
||
|
ColumnVector n(3);
|
||
|
n(1) = U(1,1);
|
||
|
n(2) = U(2,1);
|
||
|
n(3) = U(3,1);
|
||
|
ColumnVector point_vector(3);
|
||
|
point_vector(1) = p[0] - rPos(1);
|
||
|
point_vector(2) = p[1] - rPos(2);
|
||
|
point_vector(3) = p[2] - rPos(3);
|
||
|
point_vector = point_vector / point_vector.NormFrobenius();
|
||
|
Real angle = (n.t() * point_vector).AsScalar();
|
||
|
if (angle < 0) {
|
||
|
n *= -1.0;
|
||
|
}
|
||
|
n = n / n.NormFrobenius();
|
||
|
normals.push_back(Point(n(1), n(2), n(3)));
|
||
|
}
|
||
|
annDeallocPts(pa);
|
||
|
}
|
||
|
|
||
|
///////////////////////////////////////////////////////
|
||
|
/////////////NORMALS USING IMAGE NEIGHBORS ////////////
|
||
|
///////////////////////////////////////////////////////
|
||
|
void calculateNormalsPANORAMA(vector<Point> &normals,
|
||
|
vector<Point> &points,
|
||
|
vector< vector< vector< cv::Vec3f > > > extendedMap,
|
||
|
const double _rPos[3])
|
||
|
{
|
||
|
ColumnVector rPos(3);
|
||
|
for (int i = 0; i < 3; ++i)
|
||
|
rPos(i+1) = _rPos[i];
|
||
|
|
||
|
cout<<"Total number of points: "<<points.size()<<endl;
|
||
|
points.clear();
|
||
|
int nr_neighbors = 0;
|
||
|
cout << "height of Image: "<<extendedMap.size()<<endl;
|
||
|
cout << "width of Image: "<<extendedMap[0].size()<<endl;
|
||
|
|
||
|
// as the nearest neighbors and then the same PCA method as done in AKNN
|
||
|
//temporary dynamic array for all the neighbors of a given point
|
||
|
vector<cv::Vec3f> neighbors;
|
||
|
for (size_t i=0; i< extendedMap.size(); i++)
|
||
|
{
|
||
|
for (size_t j=0; j<extendedMap[i].size(); j++)
|
||
|
{
|
||
|
if (extendedMap[i][j].size() == 0) continue;
|
||
|
neighbors.clear();
|
||
|
Point mean(0.0,0.0,0.0);
|
||
|
double temp_n[3],norm_n = 0.0;
|
||
|
|
||
|
// Offset for neighbor computation
|
||
|
int offset[2][5] = {{-1,0,1,0,0},{0,-1,0,1,0}};
|
||
|
|
||
|
// Traversing all the cells in the extended map
|
||
|
for (int n = 0; n < 5; ++n) {
|
||
|
int x = i + offset[0][n];
|
||
|
int y = j + offset[1][n];
|
||
|
|
||
|
// Copy the neighboring buckets into the vector
|
||
|
if (x >= 0 && x < (int)extendedMap.size() &&
|
||
|
y >= 0 && y < (int)extendedMap[x].size()) {
|
||
|
for (unsigned int k = 0; k < extendedMap[x][y].size(); k++) {
|
||
|
neighbors.push_back(extendedMap[x][y][k]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
nr_neighbors = neighbors.size();
|
||
|
cv::Vec3f p = extendedMap[i][j][0];
|
||
|
|
||
|
//if no neighbor point is found in the 4-neighboring pixels then normal is set to zero
|
||
|
if (nr_neighbors < 3)
|
||
|
{
|
||
|
points.push_back(Point(p[0], p[1], p[2]));
|
||
|
normals.push_back(Point(0.0,0.0,0.0));
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
//calculate mean for all the points
|
||
|
Matrix X(nr_neighbors,3);
|
||
|
SymmetricMatrix A(3);
|
||
|
Matrix U(3,3);
|
||
|
DiagonalMatrix D(3);
|
||
|
|
||
|
//calculate mean for all the points
|
||
|
for(int k = 0; k < nr_neighbors; k++)
|
||
|
{
|
||
|
cv::Vec3f pp = neighbors[k];
|
||
|
mean.x += pp[0];
|
||
|
mean.y += pp[1];
|
||
|
mean.z += pp[2];
|
||
|
}
|
||
|
|
||
|
mean.x /= nr_neighbors;
|
||
|
mean.y /= nr_neighbors;
|
||
|
mean.z /= nr_neighbors;
|
||
|
//calculate covariance = A for all the points
|
||
|
for (int i = 0; i < nr_neighbors; ++i) {
|
||
|
cv::Vec3f pp = neighbors[i];
|
||
|
X(i+1, 1) = pp[0] - mean.x;
|
||
|
X(i+1, 2) = pp[1] - mean.y;
|
||
|
X(i+1, 3) = pp[2] - mean.z;
|
||
|
}
|
||
|
|
||
|
A << 1.0/nr_neighbors * X.t() * X;
|
||
|
|
||
|
EigenValues(A, D, U);
|
||
|
//normal = eigenvector corresponding to lowest
|
||
|
//eigen value that is the 1st column of matrix U
|
||
|
ColumnVector n(3);
|
||
|
n(1) = U(1,1);
|
||
|
n(2) = U(2,1);
|
||
|
n(3) = U(3,1);
|
||
|
ColumnVector point_vector(3);
|
||
|
point_vector(1) = p[0] - rPos(1);
|
||
|
point_vector(2) = p[1] - rPos(2);
|
||
|
point_vector(3) = p[2] - rPos(3);
|
||
|
point_vector = point_vector / point_vector.NormFrobenius();
|
||
|
Real angle = (n.t() * point_vector).AsScalar();
|
||
|
if (angle < 0) {
|
||
|
n *= -1.0;
|
||
|
}
|
||
|
n = n / n.NormFrobenius();
|
||
|
|
||
|
for (unsigned int k = 0; k < extendedMap[i][j].size(); k++) {
|
||
|
cv::Vec3f p = extendedMap[i][j][k];
|
||
|
points.push_back(Point(p[0], p[1], p[2]));
|
||
|
normals.push_back(Point(n(1), n(2), n(3)));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
///////////FAST NORMALS USING PANORAMA EQUIRECTANGULAR RANGE IMAGE //////////////////////////
|
||
|
/////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
/*
|
||
|
void calculateNormalsFAST(vector<Point> &normals,vector<Point> &points,cv::Mat &img,vector<vector<vector<cv::Vec3f>>> extendedMap)
|
||
|
{
|
||
|
cout<<"Total number of points: "<<points.size()<<endl;
|
||
|
points.clear();
|
||
|
int nr_points = 0;
|
||
|
//int nr_neighbors = 0,nr_neighbors_center = 0;
|
||
|
cout << "height of Image: "<<extendedMap.size()<<endl;
|
||
|
cout << "width of Image: "<<extendedMap[0].size()<<endl;
|
||
|
for (size_t i=0; i< extendedMap.size(); ++i)
|
||
|
{
|
||
|
for (size_t j=0; j<extendedMap[0].size(); j++)
|
||
|
{
|
||
|
double theta,phi,rho;
|
||
|
double x,y,z;
|
||
|
double dRdTheta,dRdPhi;
|
||
|
double n[3],m;
|
||
|
nr_points = extendedMap[i][j].size();
|
||
|
if (nr_points == 0 ) continue;
|
||
|
|
||
|
for (int k = 0; k< nr_points; k++)
|
||
|
{
|
||
|
cv::Vec3f p = extendedMap[i][j][k];
|
||
|
x = p[0];
|
||
|
y = p[1];
|
||
|
z = p[2];
|
||
|
rho = sqrt(x*x + y*y + z*z);
|
||
|
theta = atan(y/x);
|
||
|
phi = atan(z/x);
|
||
|
|
||
|
//Sobel Filter for the derivative
|
||
|
dRdTheta = dRdPhi = 0.0;
|
||
|
|
||
|
if (i == 0 || i == extendedMap.size()-1 || j == 0 || j == extendedMap[0].size()-1)
|
||
|
{
|
||
|
points.push_back(Point(x, y, z));
|
||
|
normals.push_back(Point(0.0,0.0,0.0));
|
||
|
continue;
|
||
|
}
|
||
|
dRdPhi += 10*img.at<uchar>(i-1,j);
|
||
|
dRdPhi += 3 *img.at<uchar>(i-1,j-1);
|
||
|
dRdPhi += 3 *img.at<uchar>(i-1,j+1);
|
||
|
dRdPhi -= 10*img.at<uchar>(i+1,j);
|
||
|
dRdPhi -= 3 *img.at<uchar>(i+1,j-1);
|
||
|
dRdPhi -= 3 *img.at<uchar>(i+1,j+1);
|
||
|
|
||
|
dRdTheta += 10*img.at<uchar>(i,j-1);
|
||
|
dRdTheta += 3 *img.at<uchar>(i-1,j-1);
|
||
|
dRdTheta += 3 *img.at<uchar>(i+1,j-1);
|
||
|
dRdTheta -= 10*img.at<uchar>(i,j+1);
|
||
|
dRdTheta -= 3 *img.at<uchar>(i-1,j+1);
|
||
|
dRdTheta -= 3 *img.at<uchar>(i+1,j+1);
|
||
|
|
||
|
n[0] = cos(theta) * sin(phi) - sin(theta) * dRdTheta / rho / sin(phi) +
|
||
|
cos(theta) * cos(phi) * dRdPhi / rho;
|
||
|
|
||
|
n[1] = sin(theta) * sin(phi) + cos(theta) * dRdTheta / rho / sin(phi) +
|
||
|
sin(theta) * cos(phi) * dRdPhi / rho;
|
||
|
|
||
|
n[2] = cos(phi) - sin(phi) * dRdPhi / rho;
|
||
|
|
||
|
//n[2] = -n[2];
|
||
|
|
||
|
m = sqrt(n[0]*n[0]+n[1]*n[1]+n[2]*n[2]);
|
||
|
n[0] /= m; n[1] /= m; n[2] /= m;
|
||
|
|
||
|
points.push_back(Point(x, y, z));
|
||
|
normals.push_back(Point(n[0],n[1],n[2]));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* retrieve a cv::Mat with x,y,z,r from a scan object
|
||
|
* functionality borrowed from scan_cv::convertScanToMat but this function
|
||
|
* does not allow a scanserver to be used, prints to stdout and can only
|
||
|
* handle a single scan
|
||
|
*/
|
||
|
cv::Mat scan2mat(Scan *source)
|
||
|
{
|
||
|
DataXYZ xyz = source->get("xyz");
|
||
|
|
||
|
DataReflectance xyz_reflectance = source->get("reflectance");
|
||
|
|
||
|
unsigned int nPoints = xyz.size();
|
||
|
cv::Mat scan(nPoints,1,CV_32FC(4));
|
||
|
scan = cv::Scalar::all(0);
|
||
|
|
||
|
cv::MatIterator_<cv::Vec4f> it;
|
||
|
|
||
|
it = scan.begin<cv::Vec4f>();
|
||
|
for(unsigned int i = 0; i < nPoints; i++){
|
||
|
float x, y, z, reflectance;
|
||
|
x = xyz[i][0];
|
||
|
y = xyz[i][1];
|
||
|
z = xyz[i][2];
|
||
|
if(xyz_reflectance.size() != 0)
|
||
|
{
|
||
|
reflectance = xyz_reflectance[i];
|
||
|
|
||
|
//normalize the reflectance
|
||
|
reflectance += 32;
|
||
|
reflectance /= 64;
|
||
|
reflectance -= 0.2;
|
||
|
reflectance /= 0.3;
|
||
|
if (reflectance < 0) reflectance = 0;
|
||
|
if (reflectance > 1) reflectance = 1;
|
||
|
}
|
||
|
|
||
|
(*it)[0] = x;
|
||
|
(*it)[1] = y;
|
||
|
(*it)[2] = z;
|
||
|
if(xyz_reflectance.size() != 0)
|
||
|
(*it)[3] = reflectance;
|
||
|
else
|
||
|
(*it)[3] = 0;
|
||
|
|
||
|
++it;
|
||
|
}
|
||
|
return scan;
|
||
|
}
|
||
|
/*
|
||
|
* convert a matrix of float values (range image) to a matrix of unsigned
|
||
|
* eight bit characters using different techniques
|
||
|
*/
|
||
|
cv::Mat float2uchar(cv::Mat &source, bool logarithm, float cutoff)
|
||
|
{
|
||
|
cv::Mat result(source.size(), CV_8U, cv::Scalar::all(0));
|
||
|
float max = 0;
|
||
|
// find maximum value
|
||
|
if (cutoff == 0.0) {
|
||
|
// without cutoff, just iterate through all values to find the largest
|
||
|
for (cv::MatIterator_<float> it = source.begin<float>();
|
||
|
it != source.end<float>(); ++it) {
|
||
|
float val = *it;
|
||
|
if (val > max) {
|
||
|
max = val;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
// when a cutoff is specified, sort all the points by value and then
|
||
|
// specify the max so that <cutoff> values are larger than it
|
||
|
vector<float> sorted(source.cols*source.rows);
|
||
|
int i = 0;
|
||
|
for (cv::MatIterator_<float> it = source.begin<float>();
|
||
|
it != source.end<float>(); ++it, ++i) {
|
||
|
sorted[i] = *it;
|
||
|
}
|
||
|
std::sort(sorted.begin(), sorted.end());
|
||
|
max = sorted[(int)(source.cols*source.rows*(1.0-cutoff))];
|
||
|
cout << "A cutoff of " << cutoff << " resulted in a max value of " << max << endl;
|
||
|
}
|
||
|
|
||
|
cv::MatIterator_<float> src = source.begin<float>();
|
||
|
cv::MatIterator_<uchar> dst = result.begin<uchar>();
|
||
|
cv::MatIterator_<float> end = source.end<float>();
|
||
|
if (logarithm) {
|
||
|
// stretch values from 0 to max logarithmically over 0 to 255
|
||
|
// using the logarithm allows to represent smaller values with more
|
||
|
// precision and larger values with less
|
||
|
max = log(max+1);
|
||
|
for (; src != end; ++src, ++dst) {
|
||
|
float val = (log(*src+1)*255.0)/max;
|
||
|
if (val > 255)
|
||
|
*dst = 255;
|
||
|
else
|
||
|
*dst = (uchar)val;
|
||
|
}
|
||
|
} else {
|
||
|
// stretch values from 0 to max linearly over 0 to 255
|
||
|
for (; src != end; ++src, ++dst) {
|
||
|
float val = (*src*255.0)/max;
|
||
|
if (val > 255)
|
||
|
*dst = 255;
|
||
|
else
|
||
|
*dst = (uchar)val;
|
||
|
}
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
/// Write a pose file with the specofied name
|
||
|
void writePoseFiles(string dir, const double* rPos, const double* rPosTheta,int scanNumber)
|
||
|
{
|
||
|
string poseFileName = dir + "/scan" + to_string(scanNumber, 3) + ".pose";
|
||
|
ofstream posout(poseFileName.c_str());
|
||
|
|
||
|
posout << rPos[0] << " "
|
||
|
<< rPos[1] << " "
|
||
|
<< rPos[2] << endl
|
||
|
<< deg(rPosTheta[0]) << " "
|
||
|
<< deg(rPosTheta[1]) << " "
|
||
|
<< deg(rPosTheta[2]) << endl;
|
||
|
posout.clear();
|
||
|
posout.close();
|
||
|
}
|
||
|
|
||
|
/// write scan files for all segments
|
||
|
void writeScanFiles(string dir, vector<Point> &points, vector<Point> &normals, int scanNumber)
|
||
|
{
|
||
|
string ofilename = dir + "/scan" + to_string(scanNumber, 3) + ".3d";
|
||
|
ofstream normptsout(ofilename.c_str());
|
||
|
|
||
|
for (size_t i=0; i<points.size(); ++i)
|
||
|
{
|
||
|
int r,g,b;
|
||
|
r = (int)(normals[i].x * (127.5) + 127.5);
|
||
|
g = (int)(normals[i].y * (127.5) + 127.5);
|
||
|
b = (int)(fabs(normals[i].z) * (255.0));
|
||
|
normptsout <<points[i].x<<" "<<points[i].y<<" "<<points[i].z<<" "<<r<<" "<<g<<" "<<b<<" "<<endl;
|
||
|
}
|
||
|
normptsout.clear();
|
||
|
normptsout.close();
|
||
|
}
|
||
|
|
||
|
/// =============================================
|
||
|
/// Main
|
||
|
/// =============================================
|
||
|
int main(int argc, char** argv)
|
||
|
{
|
||
|
int start, end;
|
||
|
bool scanserver;
|
||
|
int max_dist, min_dist;
|
||
|
string dir;
|
||
|
IOType iotype;
|
||
|
int k1, k2;
|
||
|
normal_method ntype;
|
||
|
int width, height;
|
||
|
|
||
|
parse_options(argc, argv, start, end, scanserver, max_dist, min_dist,
|
||
|
dir, iotype, k1, k2, ntype, width, height);
|
||
|
|
||
|
/// ----------------------------------
|
||
|
/// Prepare and read scans
|
||
|
/// ----------------------------------
|
||
|
if (scanserver) {
|
||
|
try {
|
||
|
ClientInterface::create();
|
||
|
} catch(std::runtime_error& e) {
|
||
|
cerr << "ClientInterface could not be created: " << e.what() << endl;
|
||
|
cerr << "Start the scanserver first." << endl;
|
||
|
exit(-1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Make directory for saving the scan segments
|
||
|
string normdir = dir + "normals";
|
||
|
|
||
|
#ifdef _MSC_VER
|
||
|
int success = mkdir(normdir.c_str());
|
||
|
#else
|
||
|
int success = mkdir(normdir.c_str(), S_IRWXU|S_IRWXG|S_IRWXO);
|
||
|
#endif
|
||
|
if(success == 0) {
|
||
|
cout << "Writing segments to " << normdir << endl;
|
||
|
} else if(errno == EEXIST) {
|
||
|
cout << "WARN: Directory " << normdir << " exists already. Contents will be overwriten" << endl;
|
||
|
} else {
|
||
|
cerr << "Creating directory " << normdir << " failed" << endl;
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
/// Read the scans
|
||
|
Scan::openDirectory(scanserver, dir, iotype, start, end);
|
||
|
if(Scan::allScans.size() == 0) {
|
||
|
cerr << "No scans found. Did you use the correct format?" << endl;
|
||
|
exit(-1);
|
||
|
}
|
||
|
|
||
|
cv::Mat img;
|
||
|
|
||
|
/// --------------------------------------------
|
||
|
/// Initialize and perform segmentation
|
||
|
/// --------------------------------------------
|
||
|
std::vector<Scan*>::iterator it = Scan::allScans.begin();
|
||
|
int scanNumber = 0;
|
||
|
|
||
|
for( ; it != Scan::allScans.end(); ++it) {
|
||
|
Scan* scan = *it;
|
||
|
|
||
|
// apply optional filtering
|
||
|
scan->setRangeFilter(max_dist, min_dist);
|
||
|
|
||
|
const double* rPos = scan->get_rPos();
|
||
|
const double* rPosTheta = scan->get_rPosTheta();
|
||
|
|
||
|
/// read scan into points
|
||
|
DataXYZ xyz(scan->get("xyz"));
|
||
|
vector<Point> points;
|
||
|
points.reserve(xyz.size());
|
||
|
vector<Point> normals;
|
||
|
normals.reserve(xyz.size());
|
||
|
|
||
|
for(unsigned int j = 0; j < xyz.size(); j++) {
|
||
|
points.push_back(Point(xyz[j][0], xyz[j][1], xyz[j][2]));
|
||
|
}
|
||
|
|
||
|
if(ntype == AKNN)
|
||
|
calculateNormalsAKNN(normals,points, k1, rPos);
|
||
|
else if(ntype == ADAPTIVE_AKNN)
|
||
|
calculateNormalsAdaptiveAKNN(normals,points, k1, k2, rPos);
|
||
|
else
|
||
|
{
|
||
|
// create panorama
|
||
|
fbr::panorama fPanorama(width, height, fbr::EQUIRECTANGULAR, 1, 0, fbr::EXTENDED);
|
||
|
fPanorama.createPanorama(scan2mat(scan));
|
||
|
|
||
|
// the range image has to be converted from float to uchar
|
||
|
img = fPanorama.getRangeImage();
|
||
|
img = float2uchar(img, 0, 0.0);
|
||
|
|
||
|
if(ntype == PANORAMA)
|
||
|
calculateNormalsPANORAMA(normals,points,fPanorama.getExtendedMap(), rPos);
|
||
|
else if(ntype == PANORAMA_FAST)
|
||
|
cout << "PANORAMA_FAST is not working yet" << endl;
|
||
|
// calculateNormalsFAST(normals,points,img,fPanorama.getExtendedMap());
|
||
|
}
|
||
|
|
||
|
// pose file (repeated for the number of segments
|
||
|
writePoseFiles(normdir, rPos, rPosTheta, scanNumber);
|
||
|
// scan files for all segments
|
||
|
writeScanFiles(normdir, points,normals,scanNumber);
|
||
|
|
||
|
scanNumber++;
|
||
|
}
|
||
|
|
||
|
// shutdown everything
|
||
|
if (scanserver)
|
||
|
ClientInterface::destroy();
|
||
|
else
|
||
|
Scan::closeDirectory();
|
||
|
|
||
|
cout << "Normal program end" << endl;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|