153 lines
4.7 KiB
C++
153 lines
4.7 KiB
C++
|
|
||
|
//#define WANT_STREAM
|
||
|
|
||
|
#include "include.h"
|
||
|
|
||
|
#include "newmatap.h"
|
||
|
//#include "newmatio.h"
|
||
|
|
||
|
#include "tmt.h"
|
||
|
|
||
|
#ifdef use_namespace
|
||
|
using namespace NEWMAT;
|
||
|
#endif
|
||
|
|
||
|
|
||
|
void trymatj()
|
||
|
{
|
||
|
Tracer et("Nineteenth test of Matrix package");
|
||
|
Tracer::PrintTrace();
|
||
|
// testing elementwise (SP) products
|
||
|
|
||
|
{
|
||
|
Tracer et1("Stage 1");
|
||
|
Matrix A(13,7), B(13,7), C(13,7);
|
||
|
int i,j;
|
||
|
for (i=1;i<=13;i++) for (j=1; j<=7; j++)
|
||
|
{
|
||
|
Real a = (i+j*j)/2, b = (i*j-i/4);
|
||
|
A(i,j)=a; B(i,j)=b; C(i,j)=a*b;
|
||
|
}
|
||
|
// Where complete matrix routine can be used
|
||
|
Matrix X = SP(A,B)-C; Print(X);
|
||
|
X = SP(A,B+1.0)-A-C; Print(X);
|
||
|
X = SP(A-1,B)+B-C; Print(X);
|
||
|
X = SP(A-1,B+1)+B-A-C+1; Print(X);
|
||
|
// Where row-wise routine will be used
|
||
|
A = A.Rows(7,13); B = B.Rows(7,13); C = C.Rows(7,13);
|
||
|
LowerTriangularMatrix LTA; LTA << A;
|
||
|
UpperTriangularMatrix UTB; UTB << B;
|
||
|
DiagonalMatrix DC; DC << C;
|
||
|
X = SP(LTA,UTB) - DC; Print(X);
|
||
|
X = SP(LTA*2,UTB) - DC*2; Print(X);
|
||
|
X = SP(LTA, UTB /2) - DC/2; Print(X);
|
||
|
X = SP(LTA/2, UTB*2) - DC; Print(X);
|
||
|
DiagonalMatrix DX;
|
||
|
DX << SP(A,B); DX << (DX-C); Print(DX);
|
||
|
DX << SP(A*4,B); DX << (DX-C*4); Print(DX);
|
||
|
DX << SP(A,B*2); DX << (DX-C*2); Print(DX);
|
||
|
DX << SP(A/4,B/4); DX << (DX-C/16); Print(DX);
|
||
|
LowerTriangularMatrix LX;
|
||
|
LX = SP(LTA,B); LX << (LX-C); Print(LX);
|
||
|
LX = SP(LTA*3,B); LX << (LX-C*3); Print(LX);
|
||
|
LX = SP(LTA,B*5); LX << (LX-C*5); Print(LX);
|
||
|
LX = SP(-LTA,-B); LX << (LX-C); Print(LX);
|
||
|
}
|
||
|
{
|
||
|
// Symmetric Matrices
|
||
|
Tracer et1("Stage 2");
|
||
|
SymmetricMatrix A(25), B(25), C(25);
|
||
|
int i,j;
|
||
|
for (i=1;i<=25;i++) for (j=i;j<=25;j++)
|
||
|
{
|
||
|
Real a = i*j +i - j + 3;
|
||
|
Real b = i * i + j;
|
||
|
A(i,j)=a; B(i,j)=b; C(i,j)=a*b;
|
||
|
}
|
||
|
UpperTriangularMatrix UT;
|
||
|
UT << SP(A,B); UT << (UT - C); Print(UT);
|
||
|
Matrix MA = A, X;
|
||
|
X = SP(MA,B)-C; Print(X);
|
||
|
X = SP(A,B)-C; Print(X);
|
||
|
SymmetricBandMatrix BA(25,5), BB(25,5), BC(25,5);
|
||
|
BA.Inject(A); BB.Inject(B); BC.Inject(C);
|
||
|
X = SP(BA,BB)-BC; Print(X);
|
||
|
X = SP(BA*7,BB)-BC*7; Print(X);
|
||
|
X = SP(BA,BB/8)-BC/8; Print(X);
|
||
|
X = SP(BA*16,BB/16)-BC; Print(X);
|
||
|
X = SP(BA,BB); X=X-BC; Print(X);
|
||
|
X = SP(BA*2, BB/2)-BC; Print(X);
|
||
|
X = SP(BA, BB/2)-BC/2; Print(X);
|
||
|
X = SP(BA*2, BB)-BC*2; Print(X);
|
||
|
}
|
||
|
{
|
||
|
// Band matrices
|
||
|
Tracer et1("Stage 3");
|
||
|
Matrix A(19,19), B(19,19), C(19,19);
|
||
|
int i,j;
|
||
|
for (i=1;i<=19;i++) for (j=1;j<=19;j++)
|
||
|
{
|
||
|
Real a = i*j +i - 1.5*j + 3;
|
||
|
Real b = i * i + j;
|
||
|
A(i,j)=a; B(i,j)=b; C(i,j)=a*b;
|
||
|
}
|
||
|
BandMatrix BA(19,10,7), BB(19,8,15), BC(19,8,7);
|
||
|
BA.Inject(A); BB.Inject(B); BC.Inject(C);
|
||
|
Matrix X; BandMatrix BX; ColumnVector BW(2);
|
||
|
X = SP(BA,BB); X=X-BC; Print(X);
|
||
|
X = SP(BA/8,BB); X=X-BC/8; Print(X);
|
||
|
X = SP(BA,BB*17); X=X-BC*17; Print(X);
|
||
|
X = SP(BA/4,BB*7); X=X-BC*7/4; Print(X);
|
||
|
X = SP(BA,BB)-BC; Print(X);
|
||
|
X = SP(BA/8,BB)-BC/8; Print(X);
|
||
|
X = SP(BA,BB*17)-BC*17; Print(X);
|
||
|
X = SP(BA/4,BB*7)-BC*7/4; Print(X);
|
||
|
BX = SP(BA,BB);
|
||
|
BW(1)=BX.upper-7; BW(2)=BX.lower-8; Print(BW);
|
||
|
|
||
|
BA.ReSize(19,7,10); BB.ReSize(19,15,8);
|
||
|
BC.ReSize(19,7,8);
|
||
|
BA.Inject(A); BB.Inject(B); BC.Inject(C);
|
||
|
|
||
|
X = SP(BA,BB); X=X-BC; Print(X);
|
||
|
X = SP(BA/8,BB); X=X-BC/8; Print(X);
|
||
|
X = SP(BA,BB*17); X=X-BC*17; Print(X);
|
||
|
X = SP(BA/4,BB*7); X=X-BC*7/4; Print(X);
|
||
|
X = SP(BA,BB)-BC; Print(X);
|
||
|
X = SP(BA/8,BB)-BC/8; Print(X);
|
||
|
X = SP(BA,BB*17)-BC*17; Print(X);
|
||
|
X = SP(BA/4,BB*7)-BC*7/4; Print(X);
|
||
|
BX = SP(BA,BB);
|
||
|
BW(1)=BX.upper-8; BW(2)=BX.lower-7; Print(BW);
|
||
|
}
|
||
|
{
|
||
|
// SymmetricBandMatrices
|
||
|
Tracer et1("Stage 4");
|
||
|
Matrix A(7,7), B(7,7);
|
||
|
int i,j;
|
||
|
for (i=1;i<=7;i++) for (j=1;j<=7;j++)
|
||
|
{
|
||
|
Real a = i*j +i - 1.5*j + 3;
|
||
|
Real b = i * i + j;
|
||
|
A(i,j)=a; B(i,j)=b;
|
||
|
}
|
||
|
BandMatrix BA(7,2,4), BB(7,3,1), BC(7,2,1);
|
||
|
BA.Inject(A);
|
||
|
SymmetricBandMatrix SB(7,3);
|
||
|
SymmetricMatrix S; S << (B+B.t());
|
||
|
SB.Inject(S); A = BA; S = SB;
|
||
|
Matrix X;
|
||
|
X = SP(BA,SB); X=X-SP(A,S); Print(X);
|
||
|
X = SP(BA*2,SB); X=X-SP(A,S*2); Print(X);
|
||
|
X = SP(BA,SB/4); X=X-SP(A/4,S); Print(X);
|
||
|
X = SP(BA*4,SB/4); X=X-SP(A,S); Print(X);
|
||
|
X = SP(BA,SB)-SP(A,S); Print(X);
|
||
|
X = SP(BA*2,SB)-SP(A,S*2); Print(X);
|
||
|
X = SP(BA,SB/4)-SP(A/4,S); Print(X);
|
||
|
X = SP(BA*4,SB/4)-SP(A,S); Print(X);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|