491 lines
12 KiB
Text
491 lines
12 KiB
Text
|
/*
|
||
|
* graphSlam6D implementation
|
||
|
*
|
||
|
* Copyright (C) Dorit Borrmann, Jan Elseberg, Kai Lingemann, Andreas Nuechter
|
||
|
*
|
||
|
* Released under the GPL version 3.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @file
|
||
|
* @brief The implementation of globally consistent scan matching algorithm
|
||
|
* @author Dorit Borrman. Institute of Computer Science, University of Osnabrueck, Germany.
|
||
|
* @author Jan Elseberg. Institute of Computer Science, University of Osnabrueck, Germany.
|
||
|
* @author Kai Lingemann. Institute of Computer Science, University of Osnabrueck, Germany.
|
||
|
* @author Andreas Nuechter. Institute of Computer Science, University of Osnabrueck, Germany.
|
||
|
*/
|
||
|
|
||
|
#ifdef _MSC_VER
|
||
|
#if !defined _OPENMP && defined OPENMP
|
||
|
#define _OPENMP
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
#include "slam6d/graphSlam6D.h"
|
||
|
#include "sparse/csparse.h"
|
||
|
|
||
|
#include <cfloat>
|
||
|
#include <fstream>
|
||
|
using std::ofstream;
|
||
|
using std::flush;
|
||
|
#include "slam6d/globals.icc"
|
||
|
|
||
|
using namespace NEWMAT;
|
||
|
/**
|
||
|
* Constructor
|
||
|
*
|
||
|
* @param my_icp6Dminimizer Pointer to ICP minimization functor
|
||
|
* @param mdm Maximum PtoP distance to which point pairs are collected for ICP
|
||
|
* @param max_dist_match Maximum PtoP distance to which point pairs are collected for LUM
|
||
|
* @param max_num_iterations Maximal number of iterations for ICP
|
||
|
* @param quiet Suspesses all output to std out
|
||
|
* @param meta Indicates if metascan matching has to be used
|
||
|
* @param rnd Indicates if randomization has to be used
|
||
|
* @param eP Extrapolate odometry?
|
||
|
* @param anim Animate which frames?
|
||
|
* @param epsilonICP Termination criterion for ICP
|
||
|
* @param nns_method Specifies which NNS method to use
|
||
|
* @param epsilonLUM Termination criterion for LUM
|
||
|
*/
|
||
|
graphSlam6D::graphSlam6D(icp6Dminimizer *my_icp6Dminimizer,
|
||
|
double mdm, double max_dist_match,
|
||
|
int max_num_iterations, bool quiet, bool meta, int rnd,
|
||
|
bool eP, int anim, double epsilonICP, int nns_method, double epsilonLUM)
|
||
|
{
|
||
|
this->nns_method = nns_method;
|
||
|
this->quiet = quiet;
|
||
|
this->epsilonLUM = epsilonLUM;
|
||
|
this->max_dist_match2_LUM = sqr(max_dist_match);
|
||
|
|
||
|
ctime = 0;
|
||
|
|
||
|
this->my_icp = new icp6D(my_icp6Dminimizer, mdm, max_num_iterations,
|
||
|
quiet, meta, rnd, eP, anim, epsilonICP, nns_method);
|
||
|
}
|
||
|
|
||
|
graphSlam6D::~graphSlam6D()
|
||
|
{
|
||
|
cout << "Time spent in the SLAM backend:" << ctime << endl;
|
||
|
}
|
||
|
/**
|
||
|
* This function is used to match a set of laser scans with any minimally
|
||
|
* connected Graph, using the globally consistent LUM-algorithm in 3D.
|
||
|
*
|
||
|
* @param allScans Contains all laser scans
|
||
|
* @param nrIt The number of iterations the LUM-algorithm will run
|
||
|
* @param clpairs minimal number of points aximal distance for closing loops
|
||
|
* @param loopsize minimal loop size
|
||
|
*/
|
||
|
void graphSlam6D::matchGraph6Dautomatic(vector <Scan *> allScans, int nrIt, int clpairs, int loopsize)
|
||
|
{
|
||
|
// the IdentityMatrix to transform some Scans with
|
||
|
double id[16];
|
||
|
M4identity(id);
|
||
|
|
||
|
Graph *gr = 0;
|
||
|
int i = 0;
|
||
|
|
||
|
do {
|
||
|
cout << "Generate graph ... " << flush;
|
||
|
i++;
|
||
|
if (gr) delete gr;
|
||
|
gr = new Graph(0, false);
|
||
|
int j, maxj = (int)allScans.size();
|
||
|
#ifdef _OPENMP
|
||
|
omp_set_num_threads(OPENMP_NUM_THREADS);
|
||
|
#pragma omp parallel for schedule(dynamic)
|
||
|
#endif
|
||
|
for (j = 0; j < maxj; j++) {
|
||
|
#ifdef _OPENMP
|
||
|
int thread_num = omp_get_thread_num();
|
||
|
#else
|
||
|
int thread_num = 0;
|
||
|
#endif
|
||
|
for (int k = 0; k < (int)allScans.size(); k++) {
|
||
|
if (j == k) continue;
|
||
|
Scan * FirstScan = allScans[j];
|
||
|
Scan * SecondScan = allScans[k];
|
||
|
double centroid_d[3] = {0.0, 0.0, 0.0};
|
||
|
double centroid_m[3] = {0.0, 0.0, 0.0};
|
||
|
vPtPair temp;
|
||
|
double sum_dummy;
|
||
|
Scan::getPtPairs(&temp, FirstScan, SecondScan, thread_num,
|
||
|
my_icp->get_rnd(), (int)max_dist_match2_LUM, sum_dummy,
|
||
|
centroid_m, centroid_d);
|
||
|
if ((int)temp.size() > clpairs) {
|
||
|
#ifdef _OPENMP
|
||
|
#pragma omp critical
|
||
|
#endif
|
||
|
gr->addLink(j, k);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
cout << "done" << endl;
|
||
|
} while ((doGraphSlam6D(*gr, allScans, 1) > 0.001) && (i < nrIt));
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
|
||
|
Graph *graphSlam6D::computeGraph6Dautomatic(vector <Scan *> allScans, int clpairs)
|
||
|
{
|
||
|
// the IdentityMatrix to transform some Scans with
|
||
|
double id[16];
|
||
|
M4identity(id);
|
||
|
|
||
|
int i = 0;
|
||
|
|
||
|
cout << "Generate graph ... " << flush;
|
||
|
i++;
|
||
|
Graph *gr = new Graph(0, false);
|
||
|
int j, maxj = (int)allScans.size();
|
||
|
#ifdef _OPENMP
|
||
|
omp_set_num_threads(OPENMP_NUM_THREADS);
|
||
|
#pragma omp parallel for schedule(dynamic)
|
||
|
#endif
|
||
|
for (j = 0; j < maxj; j++) {
|
||
|
#ifdef _OPENMP
|
||
|
int thread_num = omp_get_thread_num();
|
||
|
#else
|
||
|
int thread_num = 0;
|
||
|
#endif
|
||
|
for (int k = 0; k < (int)allScans.size(); k++) {
|
||
|
if (j == k) continue;
|
||
|
Scan * FirstScan = allScans[j];
|
||
|
Scan * SecondScan = allScans[k];
|
||
|
double centroid_d[3] = {0.0, 0.0, 0.0};
|
||
|
double centroid_m[3] = {0.0, 0.0, 0.0};
|
||
|
vPtPair temp;
|
||
|
double sum_dummy;
|
||
|
Scan::getPtPairs(&temp, FirstScan, SecondScan, thread_num,
|
||
|
my_icp->get_rnd(), (int)max_dist_match2_LUM, sum_dummy,
|
||
|
centroid_m, centroid_d);
|
||
|
if ((int)temp.size() > clpairs) {
|
||
|
#ifdef _OPENMP
|
||
|
#pragma omp critical
|
||
|
#endif
|
||
|
gr->addLink(j, k);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
cout << "done" << endl;
|
||
|
|
||
|
return gr;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This function is used to solve the system of linear eq.
|
||
|
*
|
||
|
* @param G symmetric, positive definite Matrix, thus invertable
|
||
|
* @param B column vector
|
||
|
*/
|
||
|
void graphSlam6D::writeMatrixPGM(const Matrix &G)
|
||
|
{
|
||
|
int n = G.Ncols();
|
||
|
static int matrixnum = 0;
|
||
|
string mf = "matrix" + to_string(matrixnum,4) + ".pgm";
|
||
|
ofstream matrixout(mf.c_str());
|
||
|
matrixout << "P2" << endl
|
||
|
<< "# CREATOR slam6D (c) Andreas Nuechter, 05/2007" << endl
|
||
|
<< n << " " << n << endl
|
||
|
<< 255 << endl;
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
for (int j = 0; j < n; j++) {
|
||
|
if (G.element(i, j) > 0.001) {
|
||
|
matrixout << 0 << " ";
|
||
|
} else {
|
||
|
matrixout << 255 << " ";
|
||
|
}
|
||
|
}
|
||
|
matrixout << endl;
|
||
|
}
|
||
|
// matrixout << G << endl;
|
||
|
matrixout.close();
|
||
|
matrixout.clear();
|
||
|
matrixnum++;
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/**
|
||
|
* This function is used to solve the system of linear eq.
|
||
|
*
|
||
|
* @param G Matrix, invertable
|
||
|
* @param B column vector
|
||
|
*/
|
||
|
ColumnVector graphSlam6D::solve(const Matrix &G, const ColumnVector &B)
|
||
|
{
|
||
|
|
||
|
#ifdef WRITE_MATRIX_PGM
|
||
|
writeMatrixPGM(G);
|
||
|
#endif
|
||
|
|
||
|
// ----------------------------------
|
||
|
// solve eqn via inverting the matrix
|
||
|
// ----------------------------------
|
||
|
return (ColumnVector)(G.i() * B);
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* This function is used to solve the system of linear eq.
|
||
|
* The implementation from the numerical recepies are used
|
||
|
*
|
||
|
* @param G symmetric, positive definite Matrix, thus invertable
|
||
|
* @param B column vector
|
||
|
*/
|
||
|
ColumnVector graphSlam6D::solveCholesky(const Matrix &G, const ColumnVector &B)
|
||
|
{
|
||
|
|
||
|
#ifdef WRITE_MATRIX_PGM
|
||
|
writeMatrixPGM(G);
|
||
|
#endif
|
||
|
|
||
|
// We copy the newmat matrices and use our own
|
||
|
// Cholesky decomposition code here. The Cholesky
|
||
|
// decomosition is based on the Numerical Recipes in C.
|
||
|
// This speed ups computation time
|
||
|
|
||
|
// copy values
|
||
|
int n = G.Ncols();
|
||
|
double **A = new double*[n];
|
||
|
double *C = new double[n];
|
||
|
double *diag = new double[n];
|
||
|
double *x = new double[n];
|
||
|
ColumnVector X(n);
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
A[i] = new double[n];
|
||
|
for (int j = 0; j < n; j++) {
|
||
|
A[i][j] = G.element(i, j);
|
||
|
}
|
||
|
C[i] = B.element(i);
|
||
|
}
|
||
|
// --------------------------------------------------
|
||
|
// make cholesky dekomposition with numerical recipes
|
||
|
// --------------------------------------------------
|
||
|
if (!choldc(n, A, diag)) {
|
||
|
cout << "cannot perfom cholesky decomposition" << endl;
|
||
|
}
|
||
|
// solve A x = C
|
||
|
cholsl(n, A, diag, C, x);
|
||
|
// copy values back
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
X.element(i) = x[i];
|
||
|
}
|
||
|
// clean up
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
delete [] A[i];
|
||
|
}
|
||
|
delete [] x;
|
||
|
delete [] diag;
|
||
|
delete [] C;
|
||
|
delete [] A;
|
||
|
|
||
|
return X;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* This function is used to solve the system of linear eq.
|
||
|
*
|
||
|
* @param G symmetric, positive definite Matrix, thus invertable
|
||
|
* @param B column vector
|
||
|
*/
|
||
|
ColumnVector graphSlam6D::solveSparseCholesky(const Matrix &G, const ColumnVector &B)
|
||
|
{
|
||
|
|
||
|
long starttime = GetCurrentTimeInMilliSec();
|
||
|
|
||
|
#ifdef WRITE_MATRIX_PGM
|
||
|
writeMatrixPGM(G);
|
||
|
#endif
|
||
|
|
||
|
int n = G.Ncols();
|
||
|
|
||
|
// ------------------------------
|
||
|
// Sparse Cholsekey decomposition
|
||
|
// ------------------------------
|
||
|
ColumnVector X(n);
|
||
|
cs *A, *T = cs_spalloc (0, 0, 1, 1, 1) ;
|
||
|
double *x = new double[n];
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
for (int j = 0; j < n; j++) {
|
||
|
if (fabs(G.element(i, j)) > 0.00001) {
|
||
|
cs_entry (T, i, j, G.element(i, j));
|
||
|
}
|
||
|
}
|
||
|
x[i] = B.element(i);
|
||
|
}
|
||
|
A = cs_triplet (T);
|
||
|
cs_dropzeros (A) ; // drop zero entries
|
||
|
cs_cholsol (A, x, 1) ;
|
||
|
// copy values back
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
X.element(i) = x[i];
|
||
|
}
|
||
|
|
||
|
cs_spfree(A);
|
||
|
cs_spfree(T);
|
||
|
delete [] x;
|
||
|
|
||
|
ctime += GetCurrentTimeInMilliSec() - starttime;
|
||
|
|
||
|
return X;
|
||
|
}
|
||
|
|
||
|
ColumnVector graphSlam6D::solveSparseCholesky(GraphMatrix *G, const ColumnVector &B)
|
||
|
{
|
||
|
|
||
|
long starttime = GetCurrentTimeInMilliSec();
|
||
|
|
||
|
int n = B.Nrows();
|
||
|
ColumnVector X(n);
|
||
|
|
||
|
// ------------------------------
|
||
|
// Sparse Cholsekey decomposition
|
||
|
// ------------------------------
|
||
|
cs *A, *T = cs_spalloc (0, 0, 1, 1, 1) ;
|
||
|
double *x = new double[n];
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
x[i] = B.element(i);
|
||
|
}
|
||
|
G->convertToCS(T);
|
||
|
A = cs_triplet (T);
|
||
|
cs_dropzeros (A) ; // drop zero entries
|
||
|
// cs_print(T, 0);
|
||
|
cs_cholsol (A, x, 1) ;
|
||
|
// copy values back
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
X.element(i) = x[i];
|
||
|
}
|
||
|
|
||
|
cs_spfree(A);
|
||
|
cs_spfree(T);
|
||
|
delete [] x;
|
||
|
|
||
|
ctime += GetCurrentTimeInMilliSec() - starttime;
|
||
|
|
||
|
return X;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* This function is used to solve the system of linear eq.
|
||
|
*
|
||
|
* @param G invertable Matrix
|
||
|
* @param B column vector
|
||
|
*/
|
||
|
ColumnVector graphSlam6D::solveSparseQR(const Matrix &G, const ColumnVector &B)
|
||
|
{
|
||
|
|
||
|
#ifdef WRITE_MATRIX_PGM
|
||
|
writeMatrixPGM(G);
|
||
|
#endif
|
||
|
|
||
|
int n = B.Ncols();
|
||
|
|
||
|
ColumnVector X(n);
|
||
|
cs *A, *T = cs_spalloc (0, 0, 1, 1, 1) ;
|
||
|
double *x = new double[n];
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
for (int j = 0; j < n; j++) {
|
||
|
if (fabs(G.element(i, j)) > 0.00001) {
|
||
|
cs_entry (T, i, j, G.element(i, j));
|
||
|
}
|
||
|
}
|
||
|
x[i] = B.element(i);
|
||
|
}
|
||
|
A = cs_triplet (T);
|
||
|
cs_dropzeros (A) ; // drop zero entries
|
||
|
int order = 3; // for qr-ordering
|
||
|
cs_qrsol ( A, x, order) ;
|
||
|
// copy values back
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
X.element(i) = x[i];
|
||
|
}
|
||
|
|
||
|
cs_spfree(A);
|
||
|
cs_spfree(T);
|
||
|
delete [] x;
|
||
|
|
||
|
return X;
|
||
|
}
|
||
|
|
||
|
void graphSlam6D::set_mdmll(double mdmll) {
|
||
|
max_dist_match2_LUM = sqr(mdmll);
|
||
|
}
|
||
|
|
||
|
|
||
|
void GraphMatrix::add(const unsigned int i, const unsigned int j, Matrix &Cij) {
|
||
|
uipair ui(i,j);
|
||
|
it = matrix.find( ui );
|
||
|
if (it != matrix.end()) {
|
||
|
(*(it->second)) += Cij;
|
||
|
} else {
|
||
|
Matrix *C = new Matrix(6,6);
|
||
|
*C = Cij;
|
||
|
matrix.insert( uimpair( ui, C));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void GraphMatrix::subtract(const unsigned int i, const unsigned int j,Matrix &Cij) {
|
||
|
uipair ui(i,j);
|
||
|
it = matrix.find( ui );
|
||
|
if (it != matrix.end()) {
|
||
|
(*it->second) -= Cij;
|
||
|
} else {
|
||
|
Matrix *C = new Matrix(6,6);
|
||
|
*C = Cij;
|
||
|
*C *= -1.0;
|
||
|
matrix.insert( uimpair( ui, C));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void GraphMatrix::print() {
|
||
|
for ( it = matrix.begin() ; it != matrix.end(); it++ ) {
|
||
|
uimpair uim = *it;
|
||
|
uipair ui = uim.first;
|
||
|
cout << ui.first << " " << ui.second << " :" << endl << *uim.second << endl;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
GraphMatrix::~GraphMatrix() {
|
||
|
for ( it = matrix.begin() ; it != matrix.end(); it++ ) {
|
||
|
uimpair uim = *it;
|
||
|
delete uim.second;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
void GraphMatrix::convertToCS(cs *T) {
|
||
|
unsigned int a,b;
|
||
|
int imin,imax,jmin,jmax;
|
||
|
|
||
|
for ( it = matrix.begin() ; it != matrix.end(); it++ ) {
|
||
|
Matrix *C = it->second;
|
||
|
a = it->first.first;
|
||
|
b = it->first.second;
|
||
|
// cout << a << " " << b << " " << C << endl;
|
||
|
imin = a*6;
|
||
|
jmin = b*6;
|
||
|
|
||
|
imax = a*6 + 6;
|
||
|
jmax = b*6 + 6;
|
||
|
a = b = 0;
|
||
|
|
||
|
for (int i = imin; i < imax; i++, a++) {
|
||
|
b = 0;
|
||
|
for (int j = jmin; j < jmax; j++, b++) {
|
||
|
if (fabs(C->element(a, b)) > 0.00001) {
|
||
|
cs_entry (T, i, j, C->element(a, b));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// print();
|
||
|
// cs_print(T, 0);
|
||
|
}
|