451 lines
15 KiB
Text
451 lines
15 KiB
Text
|
//$$ fft.cpp Fast fourier transform
|
||
|
|
||
|
// Copyright (C) 1991,2,3,4,8: R B Davies
|
||
|
|
||
|
|
||
|
#define WANT_MATH
|
||
|
// #define WANT_STREAM
|
||
|
|
||
|
#include "include.h"
|
||
|
|
||
|
#include "newmatap.h"
|
||
|
|
||
|
// #include "newmatio.h"
|
||
|
|
||
|
#ifdef use_namespace
|
||
|
namespace NEWMAT {
|
||
|
#endif
|
||
|
|
||
|
#ifdef DO_REPORT
|
||
|
#define REPORT { static ExeCounter ExeCount(__LINE__,19); ++ExeCount; }
|
||
|
#else
|
||
|
#define REPORT {}
|
||
|
#endif
|
||
|
|
||
|
static void cossin(int n, int d, Real& c, Real& s)
|
||
|
// calculate cos(twopi*n/d) and sin(twopi*n/d)
|
||
|
// minimise roundoff error
|
||
|
{
|
||
|
REPORT
|
||
|
long n4 = n * 4; int sector = (int)floor( (Real)n4 / (Real)d + 0.5 );
|
||
|
n4 -= sector * d;
|
||
|
if (sector < 0) { REPORT sector = 3 - (3 - sector) % 4; }
|
||
|
else { REPORT sector %= 4; }
|
||
|
Real ratio = 1.5707963267948966192 * (Real)n4 / (Real)d;
|
||
|
|
||
|
switch (sector)
|
||
|
{
|
||
|
case 0: REPORT c = cos(ratio); s = sin(ratio); break;
|
||
|
case 1: REPORT c = -sin(ratio); s = cos(ratio); break;
|
||
|
case 2: REPORT c = -cos(ratio); s = -sin(ratio); break;
|
||
|
case 3: REPORT c = sin(ratio); s = -cos(ratio); break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void fftstep(ColumnVector& A, ColumnVector& B, ColumnVector& X,
|
||
|
ColumnVector& Y, int after, int now, int before)
|
||
|
{
|
||
|
REPORT
|
||
|
Tracer trace("FFT(step)");
|
||
|
// const Real twopi = 6.2831853071795864769;
|
||
|
const int gamma = after * before; const int delta = now * after;
|
||
|
// const Real angle = twopi / delta; Real temp;
|
||
|
// Real r_omega = cos(angle); Real i_omega = -sin(angle);
|
||
|
Real r_arg = 1.0; Real i_arg = 0.0;
|
||
|
Real* x = X.Store(); Real* y = Y.Store(); // pointers to array storage
|
||
|
const int m = A.Nrows() - gamma;
|
||
|
|
||
|
for (int j = 0; j < now; j++)
|
||
|
{
|
||
|
Real* a = A.Store(); Real* b = B.Store(); // pointers to array storage
|
||
|
Real* x1 = x; Real* y1 = y; x += after; y += after;
|
||
|
for (int ia = 0; ia < after; ia++)
|
||
|
{
|
||
|
// generate sins & cosines explicitly rather than iteratively
|
||
|
// for more accuracy; but slower
|
||
|
cossin(-(j*after+ia), delta, r_arg, i_arg);
|
||
|
|
||
|
Real* a1 = a++; Real* b1 = b++; Real* x2 = x1++; Real* y2 = y1++;
|
||
|
if (now==2)
|
||
|
{
|
||
|
REPORT int ib = before;
|
||
|
if (ib) for (;;)
|
||
|
{
|
||
|
REPORT
|
||
|
Real* a2 = m + a1; Real* b2 = m + b1; a1 += after; b1 += after;
|
||
|
Real r_value = *a2; Real i_value = *b2;
|
||
|
*x2 = r_value * r_arg - i_value * i_arg + *(a2-gamma);
|
||
|
*y2 = r_value * i_arg + i_value * r_arg + *(b2-gamma);
|
||
|
if (!(--ib)) break;
|
||
|
x2 += delta; y2 += delta;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
REPORT int ib = before;
|
||
|
if (ib) for (;;)
|
||
|
{
|
||
|
REPORT
|
||
|
Real* a2 = m + a1; Real* b2 = m + b1; a1 += after; b1 += after;
|
||
|
Real r_value = *a2; Real i_value = *b2;
|
||
|
int in = now-1; while (in--)
|
||
|
{
|
||
|
// it should be possible to make this faster
|
||
|
// hand code for now = 2,3,4,5,8
|
||
|
// use symmetry to halve number of operations
|
||
|
a2 -= gamma; b2 -= gamma; Real temp = r_value;
|
||
|
r_value = r_value * r_arg - i_value * i_arg + *a2;
|
||
|
i_value = temp * i_arg + i_value * r_arg + *b2;
|
||
|
}
|
||
|
*x2 = r_value; *y2 = i_value;
|
||
|
if (!(--ib)) break;
|
||
|
x2 += delta; y2 += delta;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// temp = r_arg;
|
||
|
// r_arg = r_arg * r_omega - i_arg * i_omega;
|
||
|
// i_arg = temp * i_omega + i_arg * r_omega;
|
||
|
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void FFTI(const ColumnVector& U, const ColumnVector& V,
|
||
|
ColumnVector& X, ColumnVector& Y)
|
||
|
{
|
||
|
// Inverse transform
|
||
|
Tracer trace("FFTI");
|
||
|
REPORT
|
||
|
FFT(U,-V,X,Y);
|
||
|
const Real n = X.Nrows(); X /= n; Y /= (-n);
|
||
|
}
|
||
|
|
||
|
void RealFFT(const ColumnVector& U, ColumnVector& X, ColumnVector& Y)
|
||
|
{
|
||
|
// Fourier transform of a real series
|
||
|
Tracer trace("RealFFT");
|
||
|
REPORT
|
||
|
const int n = U.Nrows(); // length of arrays
|
||
|
const int n2 = n / 2;
|
||
|
if (n != 2 * n2)
|
||
|
Throw(ProgramException("Vector length not multiple of 2", U));
|
||
|
ColumnVector A(n2), B(n2);
|
||
|
Real* a = A.Store(); Real* b = B.Store(); Real* u = U.Store(); int i = n2;
|
||
|
while (i--) { *a++ = *u++; *b++ = *u++; }
|
||
|
FFT(A,B,A,B);
|
||
|
int n21 = n2 + 1;
|
||
|
X.ReSize(n21); Y.ReSize(n21);
|
||
|
i = n2 - 1;
|
||
|
a = A.Store(); b = B.Store(); // first els of A and B
|
||
|
Real* an = a + i; Real* bn = b + i; // last els of A and B
|
||
|
Real* x = X.Store(); Real* y = Y.Store(); // first els of X and Y
|
||
|
Real* xn = x + n2; Real* yn = y + n2; // last els of X and Y
|
||
|
|
||
|
*x++ = *a + *b; *y++ = 0.0; // first complex element
|
||
|
*xn-- = *a++ - *b++; *yn-- = 0.0; // last complex element
|
||
|
|
||
|
int j = -1; i = n2/2;
|
||
|
while (i--)
|
||
|
{
|
||
|
Real c,s; cossin(j--,n,c,s);
|
||
|
Real am = *a - *an; Real ap = *a++ + *an--;
|
||
|
Real bm = *b - *bn; Real bp = *b++ + *bn--;
|
||
|
Real samcbp = s * am + c * bp; Real sbpcam = s * bp - c * am;
|
||
|
*x++ = 0.5 * ( ap + samcbp); *y++ = 0.5 * ( bm + sbpcam);
|
||
|
*xn-- = 0.5 * ( ap - samcbp); *yn-- = 0.5 * (-bm + sbpcam);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void RealFFTI(const ColumnVector& A, const ColumnVector& B, ColumnVector& U)
|
||
|
{
|
||
|
// inverse of a Fourier transform of a real series
|
||
|
Tracer trace("RealFFTI");
|
||
|
REPORT
|
||
|
const int n21 = A.Nrows(); // length of arrays
|
||
|
if (n21 != B.Nrows() || n21 == 0)
|
||
|
Throw(ProgramException("Vector lengths unequal or zero", A, B));
|
||
|
const int n2 = n21 - 1; const int n = 2 * n2; int i = n2 - 1;
|
||
|
|
||
|
ColumnVector X(n2), Y(n2);
|
||
|
Real* a = A.Store(); Real* b = B.Store(); // first els of A and B
|
||
|
Real* an = a + n2; Real* bn = b + n2; // last els of A and B
|
||
|
Real* x = X.Store(); Real* y = Y.Store(); // first els of X and Y
|
||
|
Real* xn = x + i; Real* yn = y + i; // last els of X and Y
|
||
|
|
||
|
Real hn = 0.5 / n2;
|
||
|
*x++ = hn * (*a + *an); *y++ = - hn * (*a - *an);
|
||
|
a++; an--; b++; bn--;
|
||
|
int j = -1; i = n2/2;
|
||
|
while (i--)
|
||
|
{
|
||
|
Real c,s; cossin(j--,n,c,s);
|
||
|
Real am = *a - *an; Real ap = *a++ + *an--;
|
||
|
Real bm = *b - *bn; Real bp = *b++ + *bn--;
|
||
|
Real samcbp = s * am - c * bp; Real sbpcam = s * bp + c * am;
|
||
|
*x++ = hn * ( ap + samcbp); *y++ = - hn * ( bm + sbpcam);
|
||
|
*xn-- = hn * ( ap - samcbp); *yn-- = - hn * (-bm + sbpcam);
|
||
|
}
|
||
|
FFT(X,Y,X,Y); // have done inverting elsewhere
|
||
|
U.ReSize(n); i = n2;
|
||
|
x = X.Store(); y = Y.Store(); Real* u = U.Store();
|
||
|
while (i--) { *u++ = *x++; *u++ = - *y++; }
|
||
|
}
|
||
|
|
||
|
void FFT(const ColumnVector& U, const ColumnVector& V,
|
||
|
ColumnVector& X, ColumnVector& Y)
|
||
|
{
|
||
|
// from Carl de Boor (1980), Siam J Sci Stat Comput, 1 173-8
|
||
|
// but first try Sande and Gentleman
|
||
|
Tracer trace("FFT");
|
||
|
REPORT
|
||
|
const int n = U.Nrows(); // length of arrays
|
||
|
if (n != V.Nrows() || n == 0)
|
||
|
Throw(ProgramException("Vector lengths unequal or zero", U, V));
|
||
|
if (n == 1) { REPORT X = U; Y = V; return; }
|
||
|
|
||
|
// see if we can use the newfft routine
|
||
|
if (!FFT_Controller::OnlyOldFFT && FFT_Controller::CanFactor(n))
|
||
|
{
|
||
|
REPORT
|
||
|
X = U; Y = V;
|
||
|
if ( FFT_Controller::ar_1d_ft(n,X.Store(),Y.Store()) ) return;
|
||
|
}
|
||
|
|
||
|
ColumnVector B = V;
|
||
|
ColumnVector A = U;
|
||
|
X.ReSize(n); Y.ReSize(n);
|
||
|
const int nextmx = 8;
|
||
|
#ifndef ATandT
|
||
|
int prime[8] = { 2,3,5,7,11,13,17,19 };
|
||
|
#else
|
||
|
int prime[8];
|
||
|
prime[0]=2; prime[1]=3; prime[2]=5; prime[3]=7;
|
||
|
prime[4]=11; prime[5]=13; prime[6]=17; prime[7]=19;
|
||
|
#endif
|
||
|
int after = 1; int before = n; int next = 0; bool inzee = true;
|
||
|
int now = 0; int b1; // initialised to keep gnu happy
|
||
|
|
||
|
do
|
||
|
{
|
||
|
for (;;)
|
||
|
{
|
||
|
if (next < nextmx) { REPORT now = prime[next]; }
|
||
|
b1 = before / now; if (b1 * now == before) { REPORT break; }
|
||
|
next++; now += 2;
|
||
|
}
|
||
|
before = b1;
|
||
|
|
||
|
if (inzee) { REPORT fftstep(A, B, X, Y, after, now, before); }
|
||
|
else { REPORT fftstep(X, Y, A, B, after, now, before); }
|
||
|
|
||
|
inzee = !inzee; after *= now;
|
||
|
}
|
||
|
while (before != 1);
|
||
|
|
||
|
if (inzee) { REPORT A.Release(); X = A; B.Release(); Y = B; }
|
||
|
}
|
||
|
|
||
|
// Trigonometric transforms
|
||
|
// see Charles Van Loan (1992) "Computational frameworks for the fast
|
||
|
// Fourier transform" published by SIAM; section 4.4.
|
||
|
|
||
|
void DCT_II(const ColumnVector& U, ColumnVector& V)
|
||
|
{
|
||
|
// Discrete cosine transform, type II, of a real series
|
||
|
Tracer trace("DCT_II");
|
||
|
REPORT
|
||
|
const int n = U.Nrows(); // length of arrays
|
||
|
const int n2 = n / 2; const int n4 = n * 4;
|
||
|
if (n != 2 * n2)
|
||
|
Throw(ProgramException("Vector length not multiple of 2", U));
|
||
|
ColumnVector A(n);
|
||
|
Real* a = A.Store(); Real* b = a + n; Real* u = U.Store();
|
||
|
int i = n2;
|
||
|
while (i--) { *a++ = *u++; *(--b) = *u++; }
|
||
|
ColumnVector X, Y;
|
||
|
RealFFT(A, X, Y); A.CleanUp();
|
||
|
V.ReSize(n);
|
||
|
Real* x = X.Store(); Real* y = Y.Store();
|
||
|
Real* v = V.Store(); Real* w = v + n;
|
||
|
*v = *x;
|
||
|
int k = 0; i = n2;
|
||
|
while (i--)
|
||
|
{
|
||
|
Real c, s; cossin(++k, n4, c, s);
|
||
|
Real xi = *(++x); Real yi = *(++y);
|
||
|
*(++v) = xi * c + yi * s; *(--w) = xi * s - yi * c;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void DCT_II_inverse(const ColumnVector& V, ColumnVector& U)
|
||
|
{
|
||
|
// Inverse of discrete cosine transform, type II
|
||
|
Tracer trace("DCT_II_inverse");
|
||
|
REPORT
|
||
|
const int n = V.Nrows(); // length of array
|
||
|
const int n2 = n / 2; const int n4 = n * 4; const int n21 = n2 + 1;
|
||
|
if (n != 2 * n2)
|
||
|
Throw(ProgramException("Vector length not multiple of 2", V));
|
||
|
ColumnVector X(n21), Y(n21);
|
||
|
Real* x = X.Store(); Real* y = Y.Store();
|
||
|
Real* v = V.Store(); Real* w = v + n;
|
||
|
*x = *v; *y = 0.0;
|
||
|
int i = n2; int k = 0;
|
||
|
while (i--)
|
||
|
{
|
||
|
Real c, s; cossin(++k, n4, c, s);
|
||
|
Real vi = *(++v); Real wi = *(--w);
|
||
|
*(++x) = vi * c + wi * s; *(++y) = vi * s - wi * c;
|
||
|
}
|
||
|
ColumnVector A; RealFFTI(X, Y, A);
|
||
|
X.CleanUp(); Y.CleanUp(); U.ReSize(n);
|
||
|
Real* a = A.Store(); Real* b = a + n; Real* u = U.Store();
|
||
|
i = n2;
|
||
|
while (i--) { *u++ = *a++; *u++ = *(--b); }
|
||
|
}
|
||
|
|
||
|
void DST_II(const ColumnVector& U, ColumnVector& V)
|
||
|
{
|
||
|
// Discrete sine transform, type II, of a real series
|
||
|
Tracer trace("DST_II");
|
||
|
REPORT
|
||
|
const int n = U.Nrows(); // length of arrays
|
||
|
const int n2 = n / 2; const int n4 = n * 4;
|
||
|
if (n != 2 * n2)
|
||
|
Throw(ProgramException("Vector length not multiple of 2", U));
|
||
|
ColumnVector A(n);
|
||
|
Real* a = A.Store(); Real* b = a + n; Real* u = U.Store();
|
||
|
int i = n2;
|
||
|
while (i--) { *a++ = *u++; *(--b) = -(*u++); }
|
||
|
ColumnVector X, Y;
|
||
|
RealFFT(A, X, Y); A.CleanUp();
|
||
|
V.ReSize(n);
|
||
|
Real* x = X.Store(); Real* y = Y.Store();
|
||
|
Real* v = V.Store(); Real* w = v + n;
|
||
|
*(--w) = *x;
|
||
|
int k = 0; i = n2;
|
||
|
while (i--)
|
||
|
{
|
||
|
Real c, s; cossin(++k, n4, c, s);
|
||
|
Real xi = *(++x); Real yi = *(++y);
|
||
|
*v++ = xi * s - yi * c; *(--w) = xi * c + yi * s;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void DST_II_inverse(const ColumnVector& V, ColumnVector& U)
|
||
|
{
|
||
|
// Inverse of discrete sine transform, type II
|
||
|
Tracer trace("DST_II_inverse");
|
||
|
REPORT
|
||
|
const int n = V.Nrows(); // length of array
|
||
|
const int n2 = n / 2; const int n4 = n * 4; const int n21 = n2 + 1;
|
||
|
if (n != 2 * n2)
|
||
|
Throw(ProgramException("Vector length not multiple of 2", V));
|
||
|
ColumnVector X(n21), Y(n21);
|
||
|
Real* x = X.Store(); Real* y = Y.Store();
|
||
|
Real* v = V.Store(); Real* w = v + n;
|
||
|
*x = *(--w); *y = 0.0;
|
||
|
int i = n2; int k = 0;
|
||
|
while (i--)
|
||
|
{
|
||
|
Real c, s; cossin(++k, n4, c, s);
|
||
|
Real vi = *v++; Real wi = *(--w);
|
||
|
*(++x) = vi * s + wi * c; *(++y) = - vi * c + wi * s;
|
||
|
}
|
||
|
ColumnVector A; RealFFTI(X, Y, A);
|
||
|
X.CleanUp(); Y.CleanUp(); U.ReSize(n);
|
||
|
Real* a = A.Store(); Real* b = a + n; Real* u = U.Store();
|
||
|
i = n2;
|
||
|
while (i--) { *u++ = *a++; *u++ = -(*(--b)); }
|
||
|
}
|
||
|
|
||
|
void DCT_inverse(const ColumnVector& V, ColumnVector& U)
|
||
|
{
|
||
|
// Inverse of discrete cosine transform, type I
|
||
|
Tracer trace("DCT_inverse");
|
||
|
REPORT
|
||
|
const int n = V.Nrows()-1; // length of transform
|
||
|
const int n2 = n / 2; const int n21 = n2 + 1;
|
||
|
if (n != 2 * n2)
|
||
|
Throw(ProgramException("Vector length not multiple of 2", V));
|
||
|
ColumnVector X(n21), Y(n21);
|
||
|
Real* x = X.Store(); Real* y = Y.Store(); Real* v = V.Store();
|
||
|
Real vi = *v++; *x++ = vi; *y++ = 0.0;
|
||
|
Real sum1 = vi / 2.0; Real sum2 = sum1; vi = *v++;
|
||
|
int i = n2-1;
|
||
|
while (i--)
|
||
|
{
|
||
|
Real vi2 = *v++; sum1 += vi2 + vi; sum2 += vi2 - vi;
|
||
|
*x++ = vi2; vi2 = *v++; *y++ = vi - vi2; vi = vi2;
|
||
|
}
|
||
|
sum1 += vi; sum2 -= vi;
|
||
|
vi = *v; *x = vi; *y = 0.0; vi /= 2.0; sum1 += vi; sum2 += vi;
|
||
|
ColumnVector A; RealFFTI(X, Y, A);
|
||
|
X.CleanUp(); Y.CleanUp(); U.ReSize(n+1);
|
||
|
Real* a = A.Store(); Real* b = a + n; Real* u = U.Store(); v = u + n;
|
||
|
i = n2; int k = 0; *u++ = sum1 / n2; *v-- = sum2 / n2;
|
||
|
while (i--)
|
||
|
{
|
||
|
Real s = sin(1.5707963267948966192 * (++k) / n2);
|
||
|
Real ai = *(++a); Real bi = *(--b);
|
||
|
Real bz = (ai - bi) / 4 / s; Real az = (ai + bi) / 2;
|
||
|
*u++ = az - bz; *v-- = az + bz;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void DCT(const ColumnVector& U, ColumnVector& V)
|
||
|
{
|
||
|
// Discrete cosine transform, type I
|
||
|
Tracer trace("DCT");
|
||
|
REPORT
|
||
|
DCT_inverse(U, V);
|
||
|
V *= (V.Nrows()-1)/2;
|
||
|
}
|
||
|
|
||
|
void DST_inverse(const ColumnVector& V, ColumnVector& U)
|
||
|
{
|
||
|
// Inverse of discrete sine transform, type I
|
||
|
Tracer trace("DST_inverse");
|
||
|
REPORT
|
||
|
const int n = V.Nrows()-1; // length of transform
|
||
|
const int n2 = n / 2; const int n21 = n2 + 1;
|
||
|
if (n != 2 * n2)
|
||
|
Throw(ProgramException("Vector length not multiple of 2", V));
|
||
|
ColumnVector X(n21), Y(n21);
|
||
|
Real* x = X.Store(); Real* y = Y.Store(); Real* v = V.Store();
|
||
|
Real vi = *(++v); *x++ = 2 * vi; *y++ = 0.0;
|
||
|
int i = n2-1;
|
||
|
while (i--) { *y++ = *(++v); Real vi2 = *(++v); *x++ = vi2 - vi; vi = vi2; }
|
||
|
*x = -2 * vi; *y = 0.0;
|
||
|
ColumnVector A; RealFFTI(X, Y, A);
|
||
|
X.CleanUp(); Y.CleanUp(); U.ReSize(n+1);
|
||
|
Real* a = A.Store(); Real* b = a + n; Real* u = U.Store(); v = u + n;
|
||
|
i = n2; int k = 0; *u++ = 0.0; *v-- = 0.0;
|
||
|
while (i--)
|
||
|
{
|
||
|
Real s = sin(1.5707963267948966192 * (++k) / n2);
|
||
|
Real ai = *(++a); Real bi = *(--b);
|
||
|
Real az = (ai + bi) / 4 / s; Real bz = (ai - bi) / 2;
|
||
|
*u++ = az - bz; *v-- = az + bz;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void DST(const ColumnVector& U, ColumnVector& V)
|
||
|
{
|
||
|
// Discrete sine transform, type I
|
||
|
Tracer trace("DST");
|
||
|
REPORT
|
||
|
DST_inverse(U, V);
|
||
|
V *= (V.Nrows()-1)/2;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
#ifdef use_namespace
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|