156 lines
4.7 KiB
C++
156 lines
4.7 KiB
C++
|
|
||
|
//#define WANT_STREAM
|
||
|
#define WANT_MATH
|
||
|
|
||
|
|
||
|
#include "include.h"
|
||
|
|
||
|
#include "newmatap.h"
|
||
|
|
||
|
#include "tmt.h"
|
||
|
|
||
|
#ifdef use_namespace
|
||
|
using namespace NEWMAT;
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/**************************** test program ******************************/
|
||
|
|
||
|
|
||
|
// slow sort program
|
||
|
|
||
|
static void SimpleSortDescending(Real* first, const int length)
|
||
|
{
|
||
|
int i = length;
|
||
|
while (--i)
|
||
|
{
|
||
|
Real x = *first; Real* f = first; Real* g = f;
|
||
|
int j = i;
|
||
|
while (j--) if (x < *(++f)) { g = f; x = *g; }
|
||
|
*g = *first; *first++ = x;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void TestSort(int n)
|
||
|
{
|
||
|
// make some data
|
||
|
RowVector X(n);
|
||
|
int i;
|
||
|
for (i = 1; i <= n; i++)
|
||
|
X(i) = sin((Real)i) + 0.3 * cos(i/5.0) - 0.6 * sin(i/7.0) + 0.2 * sin(2.0 * i);
|
||
|
RowVector X_Sorted = X; SimpleSortDescending(X_Sorted.Store(), n);
|
||
|
RowVector A = X + X.Reverse(); SimpleSortDescending(A.Store(), n);
|
||
|
|
||
|
// test descending sort
|
||
|
|
||
|
RowVector Y = X; SortDescending(Y); Y -= X_Sorted; Print(Y);
|
||
|
Y = X_Sorted; SortDescending(Y); Y -= X_Sorted; Print(Y);
|
||
|
Y = X_Sorted.Reverse(); SortDescending(Y); Y -= X_Sorted; Print(Y);
|
||
|
Y = X + X.Reverse(); SortDescending(Y); Y -= A; Print(Y);
|
||
|
|
||
|
// test ascending sort
|
||
|
|
||
|
Y = X; SortAscending(Y); Y -= X_Sorted.Reverse(); Print(Y);
|
||
|
Y = X_Sorted; SortAscending(Y); Y -= X_Sorted.Reverse(); Print(Y);
|
||
|
Y = X_Sorted.Reverse(); SortAscending(Y); Y -= X_Sorted.Reverse(); Print(Y);
|
||
|
Y = X + X.Reverse(); SortAscending(Y); Y -= A.Reverse(); Print(Y);
|
||
|
}
|
||
|
|
||
|
|
||
|
void trymat6()
|
||
|
{
|
||
|
Tracer et("Sixth test of Matrix package");
|
||
|
Tracer::PrintTrace();
|
||
|
|
||
|
int i,j;
|
||
|
|
||
|
|
||
|
DiagonalMatrix D(6);
|
||
|
UpperTriangularMatrix U(6);
|
||
|
for (i=1;i<=6;i++) { for (j=i;j<=6;j++) U(i,j)=i*i*i-50; D(i,i)=i*i+i-10; }
|
||
|
LowerTriangularMatrix L=(U*3.0).t();
|
||
|
SymmetricMatrix S(6);
|
||
|
for (i=1;i<=6;i++) for (j=i;j<=6;j++) S(i,j)=i*i+2.0+j;
|
||
|
Matrix MD=D; Matrix ML=L; Matrix MU=U; Matrix MS=S;
|
||
|
Matrix M(6,6);
|
||
|
for (i=1;i<=6;i++) for (j=1;j<=6;j++) M(i,j)=i*j+i*i-10.0;
|
||
|
{
|
||
|
Tracer et1("Stage 1");
|
||
|
Print(Matrix(MS+(-MS)));
|
||
|
Print(Matrix((S+M)-(MS+M)));
|
||
|
Print(Matrix((M+U)-(M+MU)));
|
||
|
Print(Matrix((M+L)-(M+ML)));
|
||
|
}
|
||
|
{
|
||
|
Tracer et1("Stage 2");
|
||
|
Print(Matrix((M+D)-(M+MD)));
|
||
|
Print(Matrix((U+D)-(MU+MD)));
|
||
|
Print(Matrix((D+L)-(ML+MD)));
|
||
|
Print(Matrix((-U+D)+MU-MD));
|
||
|
Print(Matrix((-L+D)+ML-MD));
|
||
|
}
|
||
|
{
|
||
|
Tracer et1("Stage 3 - concatenate");
|
||
|
RowVector A(5);
|
||
|
A << 1 << 2 << 3 << 4 << 5;
|
||
|
RowVector B(5);
|
||
|
B << 3 << 1 << 4 << 1 << 5;
|
||
|
Matrix C(3,5);
|
||
|
C << 2 << 3 << 5 << 7 << 11
|
||
|
<< 13 << 17 << 19 << 23 << 29
|
||
|
<< 31 << 37 << 41 << 43 << 47;
|
||
|
Matrix X1 = A & B & C;
|
||
|
Matrix X2 = (A.t() | B.t() | C.t()).t();
|
||
|
Matrix X3(5,5);
|
||
|
X3.Row(1)=A; X3.Row(2)=B; X3.Rows(3,5)=C;
|
||
|
Print(Matrix(X1-X2));
|
||
|
Print(Matrix(X1-X3));
|
||
|
LowerTriangularMatrix LT1; LT1 << (A & B & C);
|
||
|
UpperTriangularMatrix UT1; UT1 << (A.t() | B.t() | C.t());
|
||
|
Print(LowerTriangularMatrix(LT1-UT1.t()));
|
||
|
DiagonalMatrix D1; D1 << (A.t() | B.t() | C.t());
|
||
|
ColumnVector At = A.t();
|
||
|
ColumnVector Bt = B.t();
|
||
|
Matrix Ct = C.t();
|
||
|
LowerTriangularMatrix LT2; LT2 << (At | Bt | Ct);
|
||
|
UpperTriangularMatrix UT2; UT2 << (At.t() & Bt.t() & Ct.t());
|
||
|
Matrix ABt = At | Bt;
|
||
|
DiagonalMatrix D2; D2 << (ABt | Ct);
|
||
|
Print(LowerTriangularMatrix(LT2-UT2.t()));
|
||
|
Print(DiagonalMatrix(D1-D2));
|
||
|
Print(Matrix(LT1+UT2-D2-X1));
|
||
|
Matrix M1 = LT1 | UT2; Matrix M2 = UT1 & LT2;
|
||
|
Print(Matrix(M1-M2.t()));
|
||
|
M1 = UT2 | LT1; M2 = LT2 & UT1;
|
||
|
Print(Matrix(M1-M2.t()));
|
||
|
M1 = (LT1 | UT2) & (UT2 | LT1);
|
||
|
M2 = (UT1 & LT2) | (LT2 & UT1);
|
||
|
Print(Matrix(M1-M2.t()));
|
||
|
SymmetricMatrix SM1; SM1 << (M1 + M1.t());
|
||
|
SymmetricMatrix SM2; SM2 << ((SM1 | M1) & (M1.t() | SM1));
|
||
|
Matrix M3(20,20);
|
||
|
M3.SubMatrix(1,10,1,10) = SM1;
|
||
|
M3.SubMatrix(1,10,11,20) = M1;
|
||
|
M3.SubMatrix(11,20,1,10) = M2;
|
||
|
M3.SubMatrix(11,20,11,20) = SM1;
|
||
|
Print(Matrix(M3-SM2));
|
||
|
|
||
|
SymmetricMatrix SM(15); SM = 0; SM.SymSubMatrix(1,10) = SM1;
|
||
|
M3.ReSize(15,15); M3 = 0; M3.SubMatrix(1,10,1,10) = SM1;
|
||
|
M3 -= SM; Print(M3);
|
||
|
SM = 0; SM.SymSubMatrix(6,15) = SM1;
|
||
|
M3.ReSize(15,15); M3 = 0; M3.SubMatrix(6,15,6,15) = SM1;
|
||
|
M3 = M3.t() - SM; Print(M3);
|
||
|
}
|
||
|
{
|
||
|
Tracer et1("Stage 4 - sort");
|
||
|
TestSort(1); TestSort(2); TestSort(3); TestSort(4);
|
||
|
TestSort(15); TestSort(16); TestSort(17); TestSort(18);
|
||
|
TestSort(99); TestSort(100); TestSort(101);
|
||
|
}
|
||
|
|
||
|
|
||
|
// cout << "\nEnd of sixth test\n";
|
||
|
}
|
||
|
|