3dpcp/.svn/pristine/8c/8c20ecab50d40e311803ad7e83ce6eba44eb1821.svn-base

369 lines
11 KiB
Text
Raw Normal View History

2012-10-24 09:28:22 +00:00
/*
* icp6D implementation
*
* Copyright (C) Andreas Nuechter, Kai Lingemann
*
* Released under the GPL version 3.
*
*/
/**
* @file
* @brief Implementation of 3D scan matching with ICP
* @author Kai Lingemann. Institute of Computer Science, University of Osnabrueck, Germany.
* @author Andreas Nuechter. Institute of Computer Science, University of Osnabrueck, Germany.
*/
#include "slam6d/icp6D.h"
#include "slam6d/metaScan.h"
#include "slam6d/globals.icc"
#include <iomanip>
using std::cerr;
#include <string.h>
#ifdef _MSC_VER
#if !defined _OPENMP && defined OPENMP
#define _OPENMP
#endif
#endif
#ifdef _OPENMP
#include <omp.h>
#endif
/**
* Constructor
*
* @param my_icp6Dminimizer Pointer to the ICP-minimizer
* @param max_dist_match Maximum distance to which point pairs are collected
* @param max_num_iterations Maximum number of iterations
* @param quiet Whether to print to the standard output
* @param meta Match against a meta scan?
* @param rnd Randomized point selection
* @param eP Extrapolate odometry?
* @param anim Animate which frames?
* @param epsilonICP Termination criterion
* @param nns_method Selects NNS method to be used
*/
icp6D::icp6D(icp6Dminimizer *my_icp6Dminimizer, double max_dist_match,
int max_num_iterations, bool quiet, bool meta, int rnd, bool eP,
int anim, double epsilonICP, int nns_method, bool cuda_enabled,
bool cad_matching)
{
this->my_icp6Dminimizer = my_icp6Dminimizer;
this->anim = anim;
this->cuda_enabled = cuda_enabled;
this->nns_method = nns_method;
if (!quiet) {
cout << "Maximal distance match : " << max_dist_match << endl
<< "Maximal number of iterations: " << max_num_iterations << endl << endl;
}
// checks
if (max_dist_match < 0.0) {
cerr << "ERROR [ICP6D]: first parameter (max_dist_match) has to be >= 0," << endl;
exit(1);
}
if (max_num_iterations < 0) {
cerr << "ERROR [ICP6D]: second parameter (max_num_iterations) has to be >= 0." << endl;
exit(1);
}
this->max_dist_match2 = sqr(max_dist_match);
this->max_num_iterations = max_num_iterations;
this->quiet = quiet;
this->meta = meta;
this->rnd = rnd;
this->eP = eP;
this->epsilonICP = epsilonICP;
// Set initial seed (for "real" random numbers)
// srand( (unsigned)time( NULL ) );
this->cad_matching = cad_matching;
}
/**
* Matches a 3D Scan against a 3D Scan
* @param PreviousScan The scan or metascan forming the model
* @param CurrentScan The current scan thas is to be matched
* @return The number of iterations done in this matching run
*/
int icp6D::match(Scan* PreviousScan, Scan* CurrentScan)
{
// If ICP shall not be applied, then just write
// the identity matrix
if (max_num_iterations == 0) {
double id[16];
M4identity(id);
CurrentScan->transform(id, Scan::ICP, 0); // write end pose
return 0;
}
// icp main loop
double ret = 0.0, prev_ret = 0.0, prev_prev_ret = 0.0;
int iter = 0;
double alignxf[16];
for (iter = 0; iter < max_num_iterations; iter++) {
prev_prev_ret = prev_ret;
prev_ret = ret;
#ifdef _OPENMP
// Implementation according to the paper
// "The Parallel Iterative Closest Point Algorithm"
// by Langis / Greenspan / Godin, IEEE 3DIM 2001
//
// The same information are given in (ecrm2007.pdf)
// Andreas Nüchter. Parallelization of Scan Matching
// for Robotic 3D Mapping. In Proceedings of the 3rd
// European Conference on Mobile Robots (ECMR '07),
// Freiburg, Germany, September 2007
omp_set_num_threads(OPENMP_NUM_THREADS);
int max = (int)CurrentScan->size<DataXYZ>("xyz reduced");
int step = max / OPENMP_NUM_THREADS;
vector<PtPair> pairs[OPENMP_NUM_THREADS];
double sum[OPENMP_NUM_THREADS];
double centroid_m[OPENMP_NUM_THREADS][3];
double centroid_d[OPENMP_NUM_THREADS][3];
double Si[OPENMP_NUM_THREADS][9];
unsigned int n[OPENMP_NUM_THREADS];
for (int i = 0; i < OPENMP_NUM_THREADS; i++) {
sum[i] = centroid_m[i][0] = centroid_m[i][1] = centroid_m[i][2] = 0.0;
centroid_d[i][0] = centroid_d[i][1] = centroid_d[i][2] = 0.0;
Si[i][0] = Si[i][1] = Si[i][2] = Si[i][3] = Si[i][4] = Si[i][5] = Si[i][6] = Si[i][7] = Si[i][8] = 0.0;
n[i] = 0;
}
#pragma omp parallel
{
int thread_num = omp_get_thread_num();
Scan::getPtPairsParallel(pairs, PreviousScan, CurrentScan,
thread_num, step,
rnd, max_dist_match2,
sum, centroid_m, centroid_d);
n[thread_num] = (unsigned int)pairs[thread_num].size();
if ((my_icp6Dminimizer->getAlgorithmID() == 1) ||
(my_icp6Dminimizer->getAlgorithmID() == 2)) {
for (unsigned int i = 0; i < n[thread_num]; i++) {
double pp[3] = {pairs[thread_num][i].p1.x - centroid_m[thread_num][0],
pairs[thread_num][i].p1.y - centroid_m[thread_num][1],
pairs[thread_num][i].p1.z - centroid_m[thread_num][2]};
double qq[3] = {pairs[thread_num][i].p2.x - centroid_d[thread_num][0],
pairs[thread_num][i].p2.y - centroid_d[thread_num][1],
pairs[thread_num][i].p2.z - centroid_d[thread_num][2]};
/*
double pp[3] = {pairs[thread_num][i].p1.x - centroid_d[thread_num][0],
pairs[thread_num][i].p1.y - centroid_d[thread_num][1],
pairs[thread_num][i].p1.z - centroid_d[thread_num][2]};
double qq[3] = {pairs[thread_num][i].p2.x - centroid_m[thread_num][0],
pairs[thread_num][i].p2.y - centroid_m[thread_num][1],
pairs[thread_num][i].p2.z - centroid_m[thread_num][2]};
*/
// formula (6)
Si[thread_num][0] += pp[0] * qq[0];
Si[thread_num][1] += pp[0] * qq[1];
Si[thread_num][2] += pp[0] * qq[2];
Si[thread_num][3] += pp[1] * qq[0];
Si[thread_num][4] += pp[1] * qq[1];
Si[thread_num][5] += pp[1] * qq[2];
Si[thread_num][6] += pp[2] * qq[0];
Si[thread_num][7] += pp[2] * qq[1];
Si[thread_num][8] += pp[2] * qq[2];
}
}
} // end parallel
// do we have enough point pairs?
unsigned int pairssize = 0;
for (int i = 0; i < OPENMP_NUM_THREADS; i++) {
pairssize += n[i];
}
if (pairssize > 3) {
if ((my_icp6Dminimizer->getAlgorithmID() == 1) ||
(my_icp6Dminimizer->getAlgorithmID() == 2) ) {
ret = my_icp6Dminimizer->Point_Point_Align_Parallel(OPENMP_NUM_THREADS,
n, sum, centroid_m, centroid_d, Si,
alignxf);
} else if (my_icp6Dminimizer->getAlgorithmID() == 6) {
ret = my_icp6Dminimizer->Point_Point_Align_Parallel(OPENMP_NUM_THREADS,
n, sum, centroid_m, centroid_d,
pairs,
alignxf);
} else {
cout << "This parallel minimization algorithm is not implemented !!!" << endl;
exit(-1);
}
} else {
//break;
}
#else
double centroid_m[3] = {0.0, 0.0, 0.0};
double centroid_d[3] = {0.0, 0.0, 0.0};
vector<PtPair> pairs;
Scan::getPtPairs(&pairs, PreviousScan, CurrentScan, 0, rnd,
max_dist_match2, ret, centroid_m, centroid_d);
// do we have enough point pairs?
if (pairs.size() > 3) {
if (my_icp6Dminimizer->getAlgorithmID() == 3 || my_icp6Dminimizer->getAlgorithmID() == 8 ) {
memcpy(alignxf, CurrentScan->get_transMat(), sizeof(alignxf));
}
ret = my_icp6Dminimizer->Point_Point_Align(pairs, alignxf, centroid_m, centroid_d);
} else {
break;
}
#endif
if ((iter == 0 && anim != -2) || ((anim > 0) && (iter % anim == 0))) {
CurrentScan->transform(alignxf, Scan::ICP, 0); // transform the current scan
} else {
CurrentScan->transform(alignxf, Scan::ICP, -1); // transform the current scan
}
if ((fabs(ret - prev_ret) < epsilonICP) && (fabs(ret - prev_prev_ret) < epsilonICP)) {
double id[16];
M4identity(id);
if(anim == -2) {
CurrentScan->transform(id, Scan::ICP, -1); // write end pose
} else {
CurrentScan->transform(id, Scan::ICP, 0); // write end pose
}
break;
}
}
return iter;
}
/**
* Computes the point to point error between two scans
*
*
*/
double icp6D::Point_Point_Error(Scan* PreviousScan, Scan* CurrentScan, double max_dist_match, unsigned int *np) {
double error = 0;
unsigned int nr_ppairs = 0;
#ifdef _OPENMP
omp_set_num_threads(OPENMP_NUM_THREADS);
int max = (int)CurrentScan->size<DataXYZ>("xyz reduced");
int step = max / OPENMP_NUM_THREADS;
vector<PtPair> pairs[OPENMP_NUM_THREADS];
double sum[OPENMP_NUM_THREADS];
double centroid_m[OPENMP_NUM_THREADS][3];
double centroid_d[OPENMP_NUM_THREADS][3];
for (int i = 0; i < OPENMP_NUM_THREADS; i++) {
sum[i] = centroid_m[i][0] = centroid_m[i][1] = centroid_m[i][2] = 0.0;
centroid_d[i][0] = centroid_d[i][1] = centroid_d[i][2] = 0.0;
}
#pragma omp parallel
{
int thread_num = omp_get_thread_num();
Scan::getPtPairsParallel(pairs, PreviousScan, CurrentScan,
thread_num, step,
rnd, sqr(max_dist_match),
sum, centroid_m, centroid_d);
}
for (unsigned int thread_num = 0; thread_num < OPENMP_NUM_THREADS; thread_num++) {
for (unsigned int i = 0; i < (unsigned int)pairs[thread_num].size(); i++) {
error += sqr(pairs[thread_num][i].p1.x - pairs[thread_num][i].p2.x)
+ sqr(pairs[thread_num][i].p1.y - pairs[thread_num][i].p2.y)
+ sqr(pairs[thread_num][i].p1.z - pairs[thread_num][i].p2.z);
}
nr_ppairs += (unsigned int)pairs[thread_num].size();
}
#else
double centroid_m[3] = {0.0, 0.0, 0.0};
double centroid_d[3] = {0.0, 0.0, 0.0};
vector<PtPair> pairs;
Scan::getPtPairs(&pairs, PreviousScan, CurrentScan, 0, rnd, sqr(max_dist_match),error, centroid_m, centroid_d);
// getPtPairs computes error as sum of squared distances
error = 0;
for (unsigned int i = 0; i < pairs.size(); i++) {
error += sqrt(
sqr(pairs[i].p1.x - pairs[i].p2.x)
+ sqr(pairs[i].p1.y - pairs[i].p2.y)
+ sqr(pairs[i].p1.z - pairs[i].p2.z) );
}
nr_ppairs = pairs.size();
#endif
if (np) *np = nr_ppairs;
// return sqrt(error/nr_ppairs);
return error/nr_ppairs;
}
/**
* This function matches the scans only with ICP
*
* @param allScans Contains all necessary scans.
*/
void icp6D::doICP(vector <Scan *> allScans)
{
double id[16];
M4identity(id);
vector < Scan* > meta_scans;
Scan* my_MetaScan = 0;
for(unsigned int i = 0; i < allScans.size(); i++) {
cout << i << "*" << endl;
Scan *CurrentScan = allScans[i];
Scan *PreviousScan = 0;
if (i > 0) {
PreviousScan = allScans[i-1];
if (eP) { // extrapolate odometry
CurrentScan->mergeCoordinatesWithRoboterPosition(PreviousScan);
}
}
if (i > 0) {
if (meta) {
match(my_MetaScan, CurrentScan);
} else
if (cad_matching) {
match(allScans[0], CurrentScan);
} else {
match(PreviousScan, CurrentScan);
}
}
// push processed scan
if ( meta && i != allScans.size()-1 ) {
meta_scans.push_back(CurrentScan);
if (my_MetaScan) {
delete my_MetaScan;
}
my_MetaScan = new MetaScan(meta_scans, nns_method, cuda_enabled);
}
}
}