123 lines
3.1 KiB
Text
123 lines
3.1 KiB
Text
|
/*
|
||
|
* kdMeta implementation
|
||
|
*
|
||
|
* Copyright (C) Andreas Nuechter, Kai Lingemann, Thomas Escher
|
||
|
*
|
||
|
* Released under the GPL version 3.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/** @file
|
||
|
* @brief An optimized k-d tree implementation. MetaScan variant.
|
||
|
* @author Andreas Nuechter. Institute of Computer Science, University of Osnabrueck, Germany.
|
||
|
* @author Kai Lingemann. Institute of Computer Science, University of Osnabrueck, Germany.
|
||
|
* @author Thomas Escher. Institute of Computer Science, University of Osnabrueck, Germany.
|
||
|
*/
|
||
|
|
||
|
#ifdef _MSC_VER
|
||
|
#define _USE_MATH_DEFINES
|
||
|
#endif
|
||
|
|
||
|
#include "slam6d/kdMeta.h"
|
||
|
#include "slam6d/globals.icc"
|
||
|
#include "slam6d/scan.h"
|
||
|
|
||
|
#include <iostream>
|
||
|
using std::cout;
|
||
|
using std::cerr;
|
||
|
using std::endl;
|
||
|
#include <algorithm>
|
||
|
using std::swap;
|
||
|
#include <cmath>
|
||
|
#include <cstring>
|
||
|
|
||
|
// KDtree class static variables
|
||
|
template<class PointData, class AccessorData, class AccessorFunc>
|
||
|
KDParams KDTreeImpl<PointData, AccessorData, AccessorFunc>::params[MAX_OPENMP_NUM_THREADS];
|
||
|
|
||
|
KDtreeMetaManaged::KDtreeMetaManaged(const vector<Scan*>& scans) :
|
||
|
m_count_locking(0)
|
||
|
{
|
||
|
// create scan pointer and data pointer arrays
|
||
|
m_size = scans.size();
|
||
|
m_scans = new Scan*[m_size];
|
||
|
for(unsigned int i = 0; i < m_size; ++i)
|
||
|
m_scans[i] = scans[i];
|
||
|
m_data = new DataXYZ*[m_size];
|
||
|
|
||
|
lock();
|
||
|
create(m_data, prepareTempIndices(scans), getPointsSize(scans));
|
||
|
unlock();
|
||
|
|
||
|
// allocate in prepareTempIndices, deleted here
|
||
|
delete[] m_temp_indices;
|
||
|
}
|
||
|
|
||
|
KDtreeMetaManaged::~KDtreeMetaManaged()
|
||
|
{
|
||
|
delete[] m_scans;
|
||
|
delete[] m_data;
|
||
|
}
|
||
|
|
||
|
Index* KDtreeMetaManaged::prepareTempIndices(const vector<Scan*>& scans)
|
||
|
{
|
||
|
unsigned int n = getPointsSize(scans);
|
||
|
|
||
|
m_temp_indices = new Index[n];
|
||
|
unsigned int s = 0, j = 0;
|
||
|
unsigned int scansize = scans[s]->size<DataXYZ>("xyz reduced");
|
||
|
for(unsigned int i = 0; i < n; ++i) {
|
||
|
m_temp_indices[i].set(s, j++);
|
||
|
// switch to next scan
|
||
|
if(j >= scansize) {
|
||
|
++s;
|
||
|
j = 0;
|
||
|
if(s < scans.size())
|
||
|
scansize = scans[s]->size<DataXYZ>("xyz reduced");
|
||
|
}
|
||
|
}
|
||
|
return m_temp_indices;
|
||
|
}
|
||
|
|
||
|
unsigned int KDtreeMetaManaged::getPointsSize(const vector<Scan*>& scans)
|
||
|
{
|
||
|
unsigned int n = 0;
|
||
|
for(vector<Scan*>::const_iterator it = scans.begin(); it != scans.end(); ++it) {
|
||
|
n += (*it)->size<DataXYZ>("xyz reduced");
|
||
|
}
|
||
|
return n;
|
||
|
}
|
||
|
|
||
|
double* KDtreeMetaManaged::FindClosest(double *_p, double maxdist2, int threadNum) const
|
||
|
{
|
||
|
params[threadNum].closest = 0;
|
||
|
params[threadNum].closest_d2 = maxdist2;
|
||
|
params[threadNum].p = _p;
|
||
|
_FindClosest(m_data, threadNum);
|
||
|
return params[threadNum].closest;
|
||
|
}
|
||
|
|
||
|
void KDtreeMetaManaged::lock()
|
||
|
{
|
||
|
boost::lock_guard<boost::mutex> lock(m_mutex_locking);
|
||
|
if(m_count_locking == 0) {
|
||
|
// lock all the contained scans, metascan uses the transformed points
|
||
|
for(unsigned int i = 0; i < m_size; ++i) {
|
||
|
m_data[i] = new DataXYZ(m_scans[i]->get("xyz reduced"));
|
||
|
}
|
||
|
}
|
||
|
++m_count_locking;
|
||
|
}
|
||
|
|
||
|
void KDtreeMetaManaged::unlock()
|
||
|
{
|
||
|
boost::lock_guard<boost::mutex> lock(m_mutex_locking);
|
||
|
--m_count_locking;
|
||
|
if(m_count_locking == 0) {
|
||
|
// delete each locking object
|
||
|
for(unsigned int i = 0; i < m_size; ++i) {
|
||
|
delete m_data[i];
|
||
|
}
|
||
|
}
|
||
|
}
|