269 lines
8.9 KiB
Text
269 lines
8.9 KiB
Text
|
|
||
|
//#define WANT_STREAM
|
||
|
|
||
|
#include "include.h"
|
||
|
|
||
|
#include "newmatap.h"
|
||
|
|
||
|
#include "tmt.h"
|
||
|
|
||
|
#ifdef use_namespace
|
||
|
using namespace NEWMAT;
|
||
|
#endif
|
||
|
|
||
|
|
||
|
|
||
|
// **************************** test program ******************************
|
||
|
|
||
|
|
||
|
void Transposer(const GenericMatrix& GM1, GenericMatrix&GM2)
|
||
|
{ GM2 = GM1.t(); }
|
||
|
|
||
|
// this is a routine in "Numerical Recipes in C" format
|
||
|
// if R is a row vector, C a column vector and D diagonal
|
||
|
// make matrix DCR
|
||
|
|
||
|
static void DCR(Real d[], Real c[], int m, Real r[], int n, Real **dcr)
|
||
|
{
|
||
|
int i, j;
|
||
|
for (i = 1; i <= m; i++) for (j = 1; j <= n; j++)
|
||
|
dcr[i][j] = d[i] * c[i] * r[j];
|
||
|
}
|
||
|
|
||
|
ReturnMatrix TestReturn(const GeneralMatrix& gm) { return gm; }
|
||
|
|
||
|
void trymat8()
|
||
|
{
|
||
|
// cout << "\nEighth test of Matrix package\n";
|
||
|
Tracer et("Eighth test of Matrix package");
|
||
|
Tracer::PrintTrace();
|
||
|
|
||
|
int i;
|
||
|
|
||
|
|
||
|
DiagonalMatrix D(6);
|
||
|
for (i=1;i<=6;i++) D(i,i)=i*i+i-10;
|
||
|
DiagonalMatrix D2=D;
|
||
|
Matrix MD=D;
|
||
|
|
||
|
DiagonalMatrix D1(6); for (i=1;i<=6;i++) D1(i,i)=-100+i*i*i;
|
||
|
Matrix MD1=D1;
|
||
|
Print(Matrix(D*D1-MD*MD1));
|
||
|
Print(Matrix((-D)*D1+MD*MD1));
|
||
|
Print(Matrix(D*(-D1)+MD*MD1));
|
||
|
DiagonalMatrix DX=D;
|
||
|
{
|
||
|
Tracer et1("Stage 1");
|
||
|
DX=(DX+D1)*DX; Print(Matrix(DX-(MD+MD1)*MD));
|
||
|
DX=D;
|
||
|
DX=-DX*DX+(DX-(-D1))*((-D1)+DX);
|
||
|
// Matrix MX = Matrix(MD1);
|
||
|
// MD1=DX+(MX.t())*(MX.t()); Print(MD1);
|
||
|
MD1=DX+(Matrix(MD1).t())*(Matrix(MD1).t()); Print(MD1);
|
||
|
DX=D; DX=DX; DX=D2-DX; Print(DiagonalMatrix(DX));
|
||
|
DX=D;
|
||
|
}
|
||
|
{
|
||
|
Tracer et1("Stage 2");
|
||
|
D.Release(2);
|
||
|
D1=D; D2=D;
|
||
|
Print(DiagonalMatrix(D1-DX));
|
||
|
Print(DiagonalMatrix(D2-DX));
|
||
|
MD1=1.0;
|
||
|
Print(Matrix(MD1-1.0));
|
||
|
}
|
||
|
{
|
||
|
Tracer et1("Stage 3");
|
||
|
//GenericMatrix
|
||
|
LowerTriangularMatrix LT(4);
|
||
|
LT << 1 << 2 << 3 << 4 << 5 << 6 << 7 << 8 << 9 << 10;
|
||
|
UpperTriangularMatrix UT = LT.t() * 2.0;
|
||
|
GenericMatrix GM1 = LT;
|
||
|
LowerTriangularMatrix LT1 = GM1-LT; Print(LT1);
|
||
|
GenericMatrix GM2 = GM1; LT1 = GM2; LT1 = LT1-LT; Print(LT1);
|
||
|
GM2 = GM1; LT1 = GM2; LT1 = LT1-LT; Print(LT1);
|
||
|
GM2 = GM1*2; LT1 = GM2; LT1 = LT1-LT*2; Print(LT1);
|
||
|
GM1.Release();
|
||
|
GM1=GM1; LT1=GM1-LT; Print(LT1); LT1=GM1-LT; Print(LT1);
|
||
|
GM1.Release();
|
||
|
GM1=GM1*4; LT1=GM1-LT*4; Print(LT1);
|
||
|
LT1=GM1-LT*4; Print(LT1); GM1.CleanUp();
|
||
|
GM1=LT; GM2=UT; GM1=GM1*GM2; Matrix M=GM1; M=M-LT*UT; Print(M);
|
||
|
Transposer(LT,GM2); LT1 = LT - GM2.t(); Print(LT1);
|
||
|
GM1=LT; Transposer(GM1,GM2); LT1 = LT - GM2.t(); Print(LT1);
|
||
|
GM1 = LT; GM1 = GM1 + GM1; LT1 = LT*2-GM1; Print(LT1);
|
||
|
DiagonalMatrix D; D << LT; GM1 = D; LT1 = GM1; LT1 -= D; Print(LT1);
|
||
|
UpperTriangularMatrix UT1 = GM1; UT1 -= D; Print(UT1);
|
||
|
}
|
||
|
{
|
||
|
Tracer et1("Stage 4");
|
||
|
// Another test of SVD
|
||
|
Matrix M(12,12); M = 0;
|
||
|
M(1,1) = M(2,2) = M(4,4) = M(6,6) =
|
||
|
M(7,7) = M(8,8) = M(10,10) = M(12,12) = -1;
|
||
|
M(1,6) = M(1,12) = -5.601594;
|
||
|
M(3,6) = M(3,12) = -0.000165;
|
||
|
M(7,6) = M(7,12) = -0.008294;
|
||
|
DiagonalMatrix D;
|
||
|
SVD(M,D);
|
||
|
SortDescending(D);
|
||
|
// answer given by matlab
|
||
|
DiagonalMatrix DX(12);
|
||
|
DX(1) = 8.0461;
|
||
|
DX(2) = DX(3) = DX(4) = DX(5) = DX(6) = DX(7) = 1;
|
||
|
DX(8) = 0.1243;
|
||
|
DX(9) = DX(10) = DX(11) = DX(12) = 0;
|
||
|
D -= DX; Clean(D,0.0001); Print(D);
|
||
|
}
|
||
|
#ifndef DONT_DO_NRIC
|
||
|
{
|
||
|
Tracer et1("Stage 5");
|
||
|
// test numerical recipes in C interface
|
||
|
DiagonalMatrix D(10);
|
||
|
D << 1 << 4 << 6 << 2 << 1 << 6 << 4 << 7 << 3 << 1;
|
||
|
ColumnVector C(10);
|
||
|
C << 3 << 7 << 5 << 1 << 4 << 2 << 3 << 9 << 1 << 3;
|
||
|
RowVector R(6);
|
||
|
R << 2 << 3 << 5 << 7 << 11 << 13;
|
||
|
nricMatrix M(10, 6);
|
||
|
DCR( D.nric(), C.nric(), 10, R.nric(), 6, M.nric() );
|
||
|
M -= D * C * R; Print(M);
|
||
|
|
||
|
D.ReSize(5);
|
||
|
D << 1.25 << 4.75 << 9.5 << 1.25 << 3.75;
|
||
|
C.ReSize(5);
|
||
|
C << 1.5 << 7.5 << 4.25 << 0.0 << 7.25;
|
||
|
R.ReSize(9);
|
||
|
R << 2.5 << 3.25 << 5.5 << 7 << 11.25 << 13.5 << 0.0 << 1.5 << 3.5;
|
||
|
Matrix MX = D * C * R;
|
||
|
M.ReSize(MX);
|
||
|
DCR( D.nric(), C.nric(), 5, R.nric(), 9, M.nric() );
|
||
|
M -= MX; Print(M);
|
||
|
}
|
||
|
#endif
|
||
|
{
|
||
|
Tracer et1("Stage 6");
|
||
|
// test dotproduct
|
||
|
DiagonalMatrix test(5); test = 1;
|
||
|
ColumnVector C(10);
|
||
|
C << 3 << 7 << 5 << 1 << 4 << 2 << 3 << 9 << 1 << 3;
|
||
|
RowVector R(10);
|
||
|
R << 2 << 3 << 5 << 7 << 11 << 13 << -3 << -4 << 2 << 4;
|
||
|
test(1) = (R * C).AsScalar() - DotProduct(C, R);
|
||
|
test(2) = C.SumSquare() - DotProduct(C, C);
|
||
|
test(3) = 6.0 * (C.t() * R.t()).AsScalar() - DotProduct(2.0 * C, 3.0 * R);
|
||
|
Matrix MC = C.AsMatrix(2,5), MR = R.AsMatrix(5,2);
|
||
|
test(4) = DotProduct(MC, MR) - (R * C).AsScalar();
|
||
|
UpperTriangularMatrix UT(5);
|
||
|
UT << 3 << 5 << 2 << 1 << 7
|
||
|
<< 1 << 1 << 8 << 2
|
||
|
<< 7 << 0 << 1
|
||
|
<< 3 << 5
|
||
|
<< 6;
|
||
|
LowerTriangularMatrix LT(5);
|
||
|
LT << 5
|
||
|
<< 2 << 3
|
||
|
<< 1 << 0 << 7
|
||
|
<< 9 << 8 << 1 << 2
|
||
|
<< 0 << 2 << 1 << 9 << 2;
|
||
|
test(5) = DotProduct(UT, LT) - Sum(SP(UT, LT));
|
||
|
Print(test);
|
||
|
// check row-wise load;
|
||
|
LowerTriangularMatrix LT1(5);
|
||
|
LT1.Row(1) << 5;
|
||
|
LT1.Row(2) << 2 << 3;
|
||
|
LT1.Row(3) << 1 << 0 << 7;
|
||
|
LT1.Row(4) << 9 << 8 << 1 << 2;
|
||
|
LT1.Row(5) << 0 << 2 << 1 << 9 << 2;
|
||
|
Matrix M = LT1 - LT; Print(M);
|
||
|
// check solution with identity matrix
|
||
|
IdentityMatrix IM(5); IM *= 2;
|
||
|
LinearEquationSolver LES1(IM);
|
||
|
LowerTriangularMatrix LTX = LES1.i() * LT;
|
||
|
M = LTX * 2 - LT; Print(M);
|
||
|
DiagonalMatrix D = IM;
|
||
|
LinearEquationSolver LES2(IM);
|
||
|
LTX = LES2.i() * LT;
|
||
|
M = LTX * 2 - LT; Print(M);
|
||
|
UpperTriangularMatrix UTX = LES1.i() * UT;
|
||
|
M = UTX * 2 - UT; Print(M);
|
||
|
UTX = LES2.i() * UT;
|
||
|
M = UTX * 2 - UT; Print(M);
|
||
|
}
|
||
|
|
||
|
{
|
||
|
Tracer et1("Stage 7");
|
||
|
// Some more GenericMatrix stuff with *= |= &=
|
||
|
// but don't any additional checks
|
||
|
BandMatrix BM1(6,2,3);
|
||
|
BM1.Row(1) << 3 << 8 << 4 << 1;
|
||
|
BM1.Row(2) << 5 << 1 << 9 << 7 << 2;
|
||
|
BM1.Row(3) << 1 << 0 << 6 << 3 << 1 << 3;
|
||
|
BM1.Row(4) << 4 << 2 << 5 << 2 << 4;
|
||
|
BM1.Row(5) << 3 << 3 << 9 << 1;
|
||
|
BM1.Row(6) << 4 << 2 << 9;
|
||
|
BandMatrix BM2(6,1,1);
|
||
|
BM2.Row(1) << 2.5 << 7.5;
|
||
|
BM2.Row(2) << 1.5 << 3.0 << 8.5;
|
||
|
BM2.Row(3) << 6.0 << 6.5 << 7.0;
|
||
|
BM2.Row(4) << 2.5 << 2.0 << 8.0;
|
||
|
BM2.Row(5) << 0.5 << 4.5 << 3.5;
|
||
|
BM2.Row(6) << 9.5 << 7.5;
|
||
|
Matrix RM1 = BM1, RM2 = BM2;
|
||
|
Matrix X;
|
||
|
GenericMatrix GRM1 = RM1, GBM1 = BM1, GRM2 = RM2, GBM2 = BM2;
|
||
|
Matrix Z(6,0); Z = 5; Print(Z);
|
||
|
GRM1 |= Z; GBM1 |= Z; GRM2 &= Z.t(); GBM2 &= Z.t();
|
||
|
X = GRM1 - BM1; Print(X); X = GBM1 - BM1; Print(X);
|
||
|
X = GRM2 - BM2; Print(X); X = GBM2 - BM2; Print(X);
|
||
|
|
||
|
GRM1 = RM1; GBM1 = BM1; GRM2 = RM2; GBM2 = BM2;
|
||
|
GRM1 *= GRM2; GBM1 *= GBM2;
|
||
|
X = GRM1 - BM1 * BM2; Print(X);
|
||
|
X = RM1 * RM2 - GBM1; Print(X);
|
||
|
|
||
|
GRM1 = RM1; GBM1 = BM1; GRM2 = RM2; GBM2 = BM2;
|
||
|
GRM1 *= GBM2; GBM1 *= GRM2; // Bs and Rs swapped on LHS
|
||
|
X = GRM1 - BM1 * BM2; Print(X);
|
||
|
X = RM1 * RM2 - GBM1; Print(X);
|
||
|
|
||
|
X = BM1.t(); BandMatrix BM1X = BM1.t();
|
||
|
GRM1 = RM1; X -= GRM1.t(); Print(X); X = BM1X - BM1.t(); Print(X);
|
||
|
|
||
|
// check that linear equation solver works with Identity Matrix
|
||
|
IdentityMatrix IM(6); IM *= 2;
|
||
|
GBM1 = BM1; GBM1 *= 4; GRM1 = RM1; GRM1 *= 4;
|
||
|
DiagonalMatrix D = IM;
|
||
|
LinearEquationSolver LES1(D);
|
||
|
BandMatrix BX;
|
||
|
BX = LES1.i() * GBM1; BX -= BM1 * 2; X = BX; Print(X);
|
||
|
LinearEquationSolver LES2(IM);
|
||
|
BX = LES2.i() * GBM1; BX -= BM1 * 2; X = BX; Print(X);
|
||
|
BX = D.i() * GBM1; BX -= BM1 * 2; X = BX; Print(X);
|
||
|
BX = IM.i() * GBM1; BX -= BM1 * 2; X = BX; Print(X);
|
||
|
BX = IM.i(); BX *= GBM1; BX -= BM1 * 2; X = BX; Print(X);
|
||
|
|
||
|
// try symmetric band matrices
|
||
|
SymmetricBandMatrix SBM; SBM << SP(BM1, BM1.t());
|
||
|
SBM << IM.i() * SBM;
|
||
|
X = 2 * SBM - SP(RM1, RM1.t()); Print(X);
|
||
|
|
||
|
// Do this again with more general D
|
||
|
D << 2.5 << 7.5 << 2 << 5 << 4.5 << 7.5;
|
||
|
BX = D.i() * BM1; X = BX - D.i() * RM1;
|
||
|
Clean(X,0.00000001); Print(X);
|
||
|
BX = D.i(); BX *= BM1; X = BX - D.i() * RM1;
|
||
|
Clean(X,0.00000001); Print(X);
|
||
|
SBM << SP(BM1, BM1.t());
|
||
|
BX = D.i() * SBM; X = BX - D.i() * SP(RM1, RM1.t());
|
||
|
Clean(X,0.00000001); Print(X);
|
||
|
|
||
|
// test return
|
||
|
BX = TestReturn(BM1); X = BX - BM1;
|
||
|
if (BX.BandWidth() != BM1.BandWidth()) X = 5;
|
||
|
Print(X);
|
||
|
}
|
||
|
|
||
|
// cout << "\nEnd of eighth test\n";
|
||
|
}
|