220 lines
8.7 KiB
Text
220 lines
8.7 KiB
Text
|
//----------------------------------------------------------------------
|
||
|
// File: kd_pr_search.cpp
|
||
|
// Programmer: Sunil Arya and David Mount
|
||
|
// Description: Priority search for kd-trees
|
||
|
// Last modified: 01/04/05 (Version 1.0)
|
||
|
//----------------------------------------------------------------------
|
||
|
// Copyright (c) 1997-2005 University of Maryland and Sunil Arya and
|
||
|
// David Mount. All Rights Reserved.
|
||
|
//
|
||
|
// This software and related documentation is part of the Approximate
|
||
|
// Nearest Neighbor Library (ANN). This software is provided under
|
||
|
// the provisions of the Lesser GNU Public License (LGPL). See the
|
||
|
// file ../ReadMe.txt for further information.
|
||
|
//
|
||
|
// The University of Maryland (U.M.) and the authors make no
|
||
|
// representations about the suitability or fitness of this software for
|
||
|
// any purpose. It is provided "as is" without express or implied
|
||
|
// warranty.
|
||
|
//----------------------------------------------------------------------
|
||
|
// History:
|
||
|
// Revision 0.1 03/04/98
|
||
|
// Initial release
|
||
|
//----------------------------------------------------------------------
|
||
|
|
||
|
#include "kd_pr_search.h" // kd priority search declarations
|
||
|
|
||
|
//----------------------------------------------------------------------
|
||
|
// Approximate nearest neighbor searching by priority search.
|
||
|
// The kd-tree is searched for an approximate nearest neighbor.
|
||
|
// The point is returned through one of the arguments, and the
|
||
|
// distance returned is the SQUARED distance to this point.
|
||
|
//
|
||
|
// The method used for searching the kd-tree is called priority
|
||
|
// search. (It is described in Arya and Mount, ``Algorithms for
|
||
|
// fast vector quantization,'' Proc. of DCC '93: Data Compression
|
||
|
// Conference}, eds. J. A. Storer and M. Cohn, IEEE Press, 1993,
|
||
|
// 381--390.)
|
||
|
//
|
||
|
// The cell of the kd-tree containing the query point is located,
|
||
|
// and cells are visited in increasing order of distance from the
|
||
|
// query point. This is done by placing each subtree which has
|
||
|
// NOT been visited in a priority queue, according to the closest
|
||
|
// distance of the corresponding enclosing rectangle from the
|
||
|
// query point. The search stops when the distance to the nearest
|
||
|
// remaining rectangle exceeds the distance to the nearest point
|
||
|
// seen by a factor of more than 1/(1+eps). (Implying that any
|
||
|
// point found subsequently in the search cannot be closer by more
|
||
|
// than this factor.)
|
||
|
//
|
||
|
// The main entry point is annkPriSearch() which sets things up and
|
||
|
// then call the recursive routine ann_pri_search(). This is a
|
||
|
// recursive routine which performs the processing for one node in
|
||
|
// the kd-tree. There are two versions of this virtual procedure,
|
||
|
// one for splitting nodes and one for leaves. When a splitting node
|
||
|
// is visited, we determine which child to continue the search on
|
||
|
// (the closer one), and insert the other child into the priority
|
||
|
// queue. When a leaf is visited, we compute the distances to the
|
||
|
// points in the buckets, and update information on the closest
|
||
|
// points.
|
||
|
//
|
||
|
// Some trickery is used to incrementally update the distance from
|
||
|
// a kd-tree rectangle to the query point. This comes about from
|
||
|
// the fact that which each successive split, only one component
|
||
|
// (along the dimension that is split) of the squared distance to
|
||
|
// the child rectangle is different from the squared distance to
|
||
|
// the parent rectangle.
|
||
|
//----------------------------------------------------------------------
|
||
|
|
||
|
//----------------------------------------------------------------------
|
||
|
// To keep argument lists short, a number of global variables
|
||
|
// are maintained which are common to all the recursive calls.
|
||
|
// These are given below.
|
||
|
//----------------------------------------------------------------------
|
||
|
|
||
|
double ANNprEps; // the error bound
|
||
|
int ANNprDim; // dimension of space
|
||
|
ANNpoint ANNprQ; // query point
|
||
|
double ANNprMaxErr; // max tolerable squared error
|
||
|
ANNpointArray ANNprPts; // the points
|
||
|
ANNpr_queue *ANNprBoxPQ; // priority queue for boxes
|
||
|
ANNmin_k *ANNprPointMK; // set of k closest points
|
||
|
|
||
|
//----------------------------------------------------------------------
|
||
|
// annkPriSearch - priority search for k nearest neighbors
|
||
|
//----------------------------------------------------------------------
|
||
|
|
||
|
void ANNkd_tree::annkPriSearch(
|
||
|
ANNpoint q, // query point
|
||
|
int k, // number of near neighbors to return
|
||
|
ANNidxArray nn_idx, // nearest neighbor indices (returned)
|
||
|
ANNdistArray dd, // dist to near neighbors (returned)
|
||
|
double eps) // error bound (ignored)
|
||
|
{
|
||
|
// max tolerable squared error
|
||
|
ANNprMaxErr = ANN_POW(1.0 + eps);
|
||
|
ANN_FLOP(2) // increment floating ops
|
||
|
|
||
|
ANNprDim = dim; // copy arguments to static equivs
|
||
|
ANNprQ = q;
|
||
|
ANNprPts = pts;
|
||
|
ANNptsVisited = 0; // initialize count of points visited
|
||
|
|
||
|
ANNprPointMK = new ANNmin_k(k); // create set for closest k points
|
||
|
|
||
|
// distance to root box
|
||
|
ANNdist box_dist = annBoxDistance(q,
|
||
|
bnd_box_lo, bnd_box_hi, dim);
|
||
|
|
||
|
ANNprBoxPQ = new ANNpr_queue(n_pts);// create priority queue for boxes
|
||
|
ANNprBoxPQ->insert(box_dist, root); // insert root in priority queue
|
||
|
|
||
|
while (ANNprBoxPQ->non_empty() &&
|
||
|
(!(ANNmaxPtsVisited != 0 && ANNptsVisited > ANNmaxPtsVisited))) {
|
||
|
ANNkd_ptr np; // next box from prior queue
|
||
|
|
||
|
// extract closest box from queue
|
||
|
ANNprBoxPQ->extr_min(box_dist, (void *&) np);
|
||
|
|
||
|
ANN_FLOP(2) // increment floating ops
|
||
|
if (box_dist*ANNprMaxErr >= ANNprPointMK->max_key())
|
||
|
break;
|
||
|
|
||
|
np->ann_pri_search(box_dist); // search this subtree.
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < k; i++) { // extract the k-th closest points
|
||
|
dd[i] = ANNprPointMK->ith_smallest_key(i);
|
||
|
nn_idx[i] = ANNprPointMK->ith_smallest_info(i);
|
||
|
}
|
||
|
|
||
|
delete ANNprPointMK; // deallocate closest point set
|
||
|
delete ANNprBoxPQ; // deallocate priority queue
|
||
|
}
|
||
|
|
||
|
//----------------------------------------------------------------------
|
||
|
// kd_split::ann_pri_search - search a splitting node
|
||
|
//----------------------------------------------------------------------
|
||
|
|
||
|
void ANNkd_split::ann_pri_search(ANNdist box_dist)
|
||
|
{
|
||
|
ANNdist new_dist; // distance to child visited later
|
||
|
// distance to cutting plane
|
||
|
ANNcoord cut_diff = ANNprQ[cut_dim] - cut_val;
|
||
|
|
||
|
if (cut_diff < 0) { // left of cutting plane
|
||
|
ANNcoord box_diff = cd_bnds[ANN_LO] - ANNprQ[cut_dim];
|
||
|
if (box_diff < 0) // within bounds - ignore
|
||
|
box_diff = 0;
|
||
|
// distance to further box
|
||
|
new_dist = (ANNdist) ANN_SUM(box_dist,
|
||
|
ANN_DIFF(ANN_POW(box_diff), ANN_POW(cut_diff)));
|
||
|
|
||
|
if (child[ANN_HI] != KD_TRIVIAL)// enqueue if not trivial
|
||
|
ANNprBoxPQ->insert(new_dist, child[ANN_HI]);
|
||
|
// continue with closer child
|
||
|
child[ANN_LO]->ann_pri_search(box_dist);
|
||
|
}
|
||
|
else { // right of cutting plane
|
||
|
ANNcoord box_diff = ANNprQ[cut_dim] - cd_bnds[ANN_HI];
|
||
|
if (box_diff < 0) // within bounds - ignore
|
||
|
box_diff = 0;
|
||
|
// distance to further box
|
||
|
new_dist = (ANNdist) ANN_SUM(box_dist,
|
||
|
ANN_DIFF(ANN_POW(box_diff), ANN_POW(cut_diff)));
|
||
|
|
||
|
if (child[ANN_LO] != KD_TRIVIAL)// enqueue if not trivial
|
||
|
ANNprBoxPQ->insert(new_dist, child[ANN_LO]);
|
||
|
// continue with closer child
|
||
|
child[ANN_HI]->ann_pri_search(box_dist);
|
||
|
}
|
||
|
ANN_SPL(1) // one more splitting node visited
|
||
|
ANN_FLOP(8) // increment floating ops
|
||
|
}
|
||
|
|
||
|
//----------------------------------------------------------------------
|
||
|
// kd_leaf::ann_pri_search - search points in a leaf node
|
||
|
//
|
||
|
// This is virtually identical to the ann_search for standard search.
|
||
|
//----------------------------------------------------------------------
|
||
|
|
||
|
void ANNkd_leaf::ann_pri_search(ANNdist box_dist)
|
||
|
{
|
||
|
register ANNdist dist; // distance to data point
|
||
|
register ANNcoord* pp; // data coordinate pointer
|
||
|
register ANNcoord* qq; // query coordinate pointer
|
||
|
register ANNdist min_dist; // distance to k-th closest point
|
||
|
register ANNcoord t;
|
||
|
register int d;
|
||
|
|
||
|
min_dist = ANNprPointMK->max_key(); // k-th smallest distance so far
|
||
|
|
||
|
for (int i = 0; i < n_pts; i++) { // check points in bucket
|
||
|
|
||
|
pp = ANNprPts[bkt[i]]; // first coord of next data point
|
||
|
qq = ANNprQ; // first coord of query point
|
||
|
dist = 0;
|
||
|
|
||
|
for(d = 0; d < ANNprDim; d++) {
|
||
|
ANN_COORD(1) // one more coordinate hit
|
||
|
ANN_FLOP(4) // increment floating ops
|
||
|
|
||
|
t = *(qq++) - *(pp++); // compute length and adv coordinate
|
||
|
// exceeds dist to k-th smallest?
|
||
|
if( (dist = ANN_SUM(dist, ANN_POW(t))) > min_dist) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (d >= ANNprDim && // among the k best?
|
||
|
(ANN_ALLOW_SELF_MATCH || dist!=0)) { // and no self-match problem
|
||
|
// add it to the list
|
||
|
ANNprPointMK->insert(dist, bkt[i]);
|
||
|
min_dist = ANNprPointMK->max_key();
|
||
|
}
|
||
|
}
|
||
|
ANN_LEAF(1) // one more leaf node visited
|
||
|
ANN_PTS(n_pts) // increment points visited
|
||
|
ANNptsVisited += n_pts; // increment number of points visited
|
||
|
}
|