208 lines
6.4 KiB
Text
208 lines
6.4 KiB
Text
|
|
||
|
#define WANT_STREAM
|
||
|
|
||
|
|
||
|
|
||
|
#include "include.h"
|
||
|
|
||
|
#include "newmat.h"
|
||
|
|
||
|
#include "tmt.h"
|
||
|
|
||
|
#ifdef use_namespace
|
||
|
using namespace NEWMAT;
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/**************************** test program ******************************/
|
||
|
|
||
|
|
||
|
void trymat1()
|
||
|
{
|
||
|
// cout << "\nFirst test of Matrix package\n\n";
|
||
|
Tracer et("First test of Matrix package");
|
||
|
Tracer::PrintTrace();
|
||
|
{
|
||
|
Tracer et1("Stage 1");
|
||
|
int i,j;
|
||
|
|
||
|
LowerTriangularMatrix L(10);
|
||
|
for (i=1;i<=10;i++) for (j=1;j<=i;j++) L(i,j)=2.0+i*i+j;
|
||
|
SymmetricMatrix S(10);
|
||
|
for (i=1;i<=10;i++) for (j=1;j<=i;j++) S(i,j)=i*j+1.0;
|
||
|
SymmetricMatrix S1 = S / 2.0;
|
||
|
S = S1 * 2.0;
|
||
|
UpperTriangularMatrix U=L.t()*2.0;
|
||
|
Print(LowerTriangularMatrix(L-U.t()*0.5));
|
||
|
DiagonalMatrix D(10);
|
||
|
for (i=1;i<=10;i++) D(i,i)=(i-4)*(i-5)*(i-6);
|
||
|
Matrix M=(S+U-D+L)*(L+U-D+S);
|
||
|
DiagonalMatrix DD=D*D;
|
||
|
LowerTriangularMatrix LD=L*D;
|
||
|
// expressions split for Turbo C
|
||
|
Matrix M1 = S*L + U*L - D*L + L*L + 10.0;
|
||
|
{ M1 = M1 + S*U + U*U - D*U + L*U - S*D; }
|
||
|
{ M1 = M1 - U*D + DD - LD + S*S; }
|
||
|
{ M1 = M1 + U*S - D*S + L*S - 10.0; }
|
||
|
M=M1-M;
|
||
|
Print(M);
|
||
|
}
|
||
|
{
|
||
|
Tracer et1("Stage 2");
|
||
|
int i,j;
|
||
|
|
||
|
LowerTriangularMatrix L(9);
|
||
|
for (i=1;i<=9;i++) for (j=1;j<=i;j++) L(i,j)=1.0+j;
|
||
|
UpperTriangularMatrix U1(9);
|
||
|
for (j=1;j<=9;j++) for (i=1;i<=j;i++) U1(i,j)=1.0+i;
|
||
|
LowerTriangularMatrix LX(9);
|
||
|
for (i=1;i<=9;i++) for (j=1;j<=i;j++) LX(i,j)=1.0+i*i;
|
||
|
UpperTriangularMatrix UX(9);
|
||
|
for (j=1;j<=9;j++) for (i=1;i<=j;i++) UX(i,j)=1.0+j*j;
|
||
|
{
|
||
|
L=L+LX/0.5; L=L-LX*3.0; L=LX*2.0+L;
|
||
|
U1=U1+UX*2.0; U1=U1-UX*3.0; U1=UX*2.0+U1;
|
||
|
}
|
||
|
|
||
|
|
||
|
SymmetricMatrix S(9);
|
||
|
for (i=1;i<=9;i++) for (j=1;j<=i;j++) S(i,j)=i*i+j;
|
||
|
{
|
||
|
SymmetricMatrix S1 = S;
|
||
|
S=S1+5.0;
|
||
|
S=S-3.0;
|
||
|
}
|
||
|
|
||
|
DiagonalMatrix D(9);
|
||
|
for (i=1;i<=9;i++) D(i,i)=S(i,i);
|
||
|
UpperTriangularMatrix U=L.t()*2.0;
|
||
|
{
|
||
|
U1=U1*2.0 - U; Print(U1);
|
||
|
L=L*2.0-D; U=U-D;
|
||
|
}
|
||
|
Matrix M=U+L; S=S*2.0; M=S-M; Print(M);
|
||
|
}
|
||
|
{
|
||
|
Tracer et1("Stage 3");
|
||
|
int i,j;
|
||
|
Matrix M(10,3), N(10,3);
|
||
|
for (i = 1; i<=10; i++) for (j = 1; j<=3; j++)
|
||
|
{ M(i,j) = 2*i-j; N(i,j) = i*j + 20; }
|
||
|
Matrix MN = M + N, M1;
|
||
|
|
||
|
M1 = M; M1 += N; M1 -= MN; Print(M1);
|
||
|
M1 = M; M1 += M1; M1 = M1 - M * 2; Print(M1);
|
||
|
M1 = M; M1 += N * 2; M1 -= (MN + N); Print(M1);
|
||
|
M1 = M; M1 -= M1; Print(M1);
|
||
|
M1 = M; M1 -= MN + M1; M1 += N + M; Print(M1);
|
||
|
M1 = M; M1 -= 5; M1 -= M; M1 *= 0.2; M1 = M1 + 1; Print(M1);
|
||
|
Matrix NT = N.t();
|
||
|
M1 = M; M1 *= NT; M1 -= M * N.t(); Print(M1);
|
||
|
M = M * M.t();
|
||
|
DiagonalMatrix D(10); D = 2;
|
||
|
M1 = M; M1 += D; M1 -= M; M1 = M1 - D; Print(M1);
|
||
|
M1 = M; M1 -= D; M1 -= M; M1 = M1 + D; Print(M1);
|
||
|
M1 = M; M1 *= D; M1 /= 2; M1 -= M; Print(M1);
|
||
|
SymmetricMatrix SM; SM << M;
|
||
|
// UpperTriangularMatrix SM; SM << M;
|
||
|
SM += 10; M1 = SM - M; M1 /=10; M1 = M1 - 1; Print(M1);
|
||
|
}
|
||
|
{
|
||
|
Tracer et1("Stage 4");
|
||
|
int i,j;
|
||
|
Matrix M(10,3), N(10,5);
|
||
|
for (i = 1; i<=10; i++) for (j = 1; j<=3; j++) M(i,j) = 2*i-j;
|
||
|
for (i = 1; i<=10; i++) for (j = 1; j<=5; j++) N(i,j) = i*j + 20;
|
||
|
Matrix M1;
|
||
|
M1 = M; M1 |= N; M1 &= N | M;
|
||
|
M1 -= (M | N) & (N | M); Print(M1);
|
||
|
M1 = M; M1 |= M1; M1 &= M1;
|
||
|
M1 -= (M | M) & (M | M); Print(M1);
|
||
|
|
||
|
}
|
||
|
{
|
||
|
Tracer et1("Stage 5");
|
||
|
int i,j;
|
||
|
BandMatrix BM1(10,2,3), BM2(10,4,1); Matrix M1(10,10), M2(10,10);
|
||
|
for (i=1;i<=10;i++) for (j=1;j<=10;j++)
|
||
|
{ M1(i,j) = 0.5*i+j*j-50; M2(i,j) = (i*101 + j*103) % 13; }
|
||
|
BM1.Inject(M1); BM2.Inject(M2);
|
||
|
BandMatrix BM = BM1; BM += BM2;
|
||
|
Matrix M1X = BM1; Matrix M2X = BM2; Matrix MX = BM;
|
||
|
MX -= M1X + M2X; Print(MX);
|
||
|
MX = BM1; MX += BM2; MX -= M1X; MX -= M2X; Print(MX);
|
||
|
SymmetricBandMatrix SM1; SM1 << BM1 * BM1.t();
|
||
|
SymmetricBandMatrix SM2; SM2 << BM2 * BM2.t();
|
||
|
SM1 *= 5.5;
|
||
|
M1X *= M1X.t(); M1X *= 5.5; M2X *= M2X.t();
|
||
|
SM1 -= SM2; M1 = SM1 - M1X + M2X; Print(M1);
|
||
|
M1 = BM1; BM1 *= SM1; M1 = M1 * SM1 - BM1; Print(M1);
|
||
|
M1 = BM1; BM1 -= SM1; M1 = M1 - SM1 - BM1; Print(M1);
|
||
|
M1 = BM1; BM1 += SM1; M1 = M1 + SM1 - BM1; Print(M1);
|
||
|
|
||
|
}
|
||
|
{
|
||
|
Tracer et1("Stage 6");
|
||
|
int i,j;
|
||
|
Matrix M(10,10), N(10,10);
|
||
|
for (i = 1; i<=10; i++) for (j = 1; j<=10; j++)
|
||
|
{ M(i,j) = 2*i-j; N(i,j) = i*j + 20; }
|
||
|
GenericMatrix GM = M;
|
||
|
GM += N; Matrix M1 = GM - N - M; Print(M1);
|
||
|
DiagonalMatrix D(10); D = 3;
|
||
|
GM = D; GM += N; GM += M; GM += D;
|
||
|
M1 = D*2 - GM + M + N; Print(M1);
|
||
|
GM = D; GM *= 4; GM += 16; GM /= 8; GM -= 2;
|
||
|
GM -= D / 2; M1 = GM; Print(M1);
|
||
|
GM = D; GM *= M; GM *= N; GM /= 3; M1 = M*N - GM; Print(M1);
|
||
|
GM = D; GM |= M; GM &= N | D; M1 = GM - ((D | M) & (N | D));
|
||
|
Print(M1);
|
||
|
GM = M; M1 = M; GM += 5; GM *= 3; M *= 3; M += 15; M1 = GM - M;
|
||
|
Print(M1);
|
||
|
D.ReSize(10); for (i = 1; i<=10; i++) D(i) = i;
|
||
|
M1 = D + 10; GM = D; GM += 10; M1 -= GM; Print(M1);
|
||
|
GM = M; GM -= D; M1 = GM; GM = D; GM -= M; M1 += GM; Print(M1);
|
||
|
GM = M; GM *= D; M1 = GM; GM = D; GM *= M.t();
|
||
|
M1 -= GM.t(); Print(M1);
|
||
|
GM = M; GM += 2 * GM; GM -= 3 * M; M1 = GM; Print(M1);
|
||
|
GM = M; GM |= GM; GM -= (M | M); M1 = GM; Print(M1);
|
||
|
GM = M; GM &= GM; GM -= (M & M); M1 = GM; Print(M1);
|
||
|
M1 = M; M1 = (M1.t() & M.t()) - (M | M).t(); Print(M1);
|
||
|
M1 = M; M1 = (M1.t() | M.t()) - (M & M).t(); Print(M1);
|
||
|
|
||
|
}
|
||
|
|
||
|
{
|
||
|
Tracer et1("Stage 7");
|
||
|
// test for bug in MS VC5
|
||
|
int n = 3;
|
||
|
int k; int j;
|
||
|
Matrix A(n,n), B(n,n);
|
||
|
|
||
|
//first version - MS VC++ 5 mis-compiles if optimisation is on
|
||
|
for (k=1; k<=n; k++)
|
||
|
{
|
||
|
for (j = 1; j <= n; j++) A(k,j) = ((k-1) * (2*j-1));
|
||
|
}
|
||
|
|
||
|
//second version
|
||
|
for (k=1; k<=n; k++)
|
||
|
{
|
||
|
const int k1 = k-1; // otherwise Visual C++ 5 fails
|
||
|
for (j = 1; j <= n; j++) B(k,j) = (k1 * (2*j-1));
|
||
|
}
|
||
|
|
||
|
if (A != B)
|
||
|
{
|
||
|
cout << "\nVisual C++ version 5 compiler error?";
|
||
|
cout << "\nTurn off optimisation";
|
||
|
}
|
||
|
|
||
|
A -= B; Print(A);
|
||
|
|
||
|
}
|
||
|
|
||
|
// cout << "\nEnd of first test\n";
|
||
|
}
|
||
|
|