3dpcp/.svn/pristine/ae/aee0de571ae9151a63e6c1a0ed20c9bfcd714f2f.svn-base

200 lines
7.3 KiB
Text
Raw Normal View History

2012-09-16 12:33:11 +00:00
#ifndef __ACCUMULATOR__
#define __ACCUMULATOR__
#include <set>
#include "shapes/ConfigFileHough.h"
#include "slam6d/point.h"
using std::multiset;
#include "shapes/hsm3d.h"
double* polar2normal(double theta, double phi);
/**
* Accumulator for the Hough Transform. For a detailed explanation of the
* different accumulator types please see:
* Dorit Borrmann, Jan Elseberg, Kai Lingemann, and Andreas Nüchter.
* A Data Structure for the 3D Hough Transform for Plane Detection.
* In Proceedings of the 7th IFAC Symposium on Intelligent Autonomous Vehicles (IAV '10),
* Lecce, Italy, September 2010.
*/
class Accumulator {
public:
/** Contains the configuration for the accumulator */
ConfigFileHough myConfigFileHough;
/** TODO */
int count;
/** Constructor */
Accumulator() { }
/** Destructor */
virtual ~Accumulator() { }
/** Prints the accumulator so that the data can be shown using gnuplot */
virtual void printAccumulator() = 0;
/** Sets the counters for each accumulator cells back to 0 */
virtual void resetAccumulator() = 0;
/** Accumulates the cell containing theta, phi and rho.
* A plane is represented by:
* rho = cos(theta)*sin(phi)*x + sin(phi)*sin(theta)*y + cos(phi)*z
* @param theta theta angle of the plane
* @param phi phi angle of the plane
* @param rho distance of the plane
*/
virtual bool accumulate(double theta, double phi, double rho) = 0;
/** Accumulate all the cells that correspond to planes that go through p.
* A plane is represented by:
* rho = cos(theta)*sin(phi)*x + sin(phi)*sin(theta)*y + cos(phi)*z
* @param p the point that is transformed into Hough Space
*/
virtual void accumulate(Point p) = 0;
/** Accumulates all the cells that correspond to planes that go through p.
* @param p the point that is transformed into Hough Space
* @return the plane whose counter has exceeded the
* ConfigFileHough.GetAccumulatorMax , or {-1,_,_}
*/
virtual double* accumulateRet(Point p) = 0;
/** Accumulate all the cells that correspond to planes that go through p.
* @param p the point that is transformed into Hough Space
* @return the cell that has the maximum counter of all cells touched by the
* Hough Transform of p
*/
virtual int* accumulateAPHT(Point p) = 0;
/**
* Given the representation (rho, theta, phi) of a plane, the function
* calculates the center of the cell that this plane belongs to.
* A plane is represented by:
* rho = cos(theta)*sin(phi)*x + sin(phi)*sin(theta)*y + cos(phi)*z
* @param theta theta angle of the plane
* @param phi phi angle of the plane
* @param rho distance of the plane (newly calculated distance will be
* written here)
* @return the normal vector of the plane in the center of the cell
*/
virtual double* getMax(double &rho, double &theta, double &phi) = 0;
/**
* Given a cell in the accumulator, the function calculates the plane that
* is represented by this cell, i.e., the rho, theta, phi representation of
* the plane in the center of the cell.
* @param cell the indices of the cell in the accumulator
* @return normal vector (x,y,z) and distance (rho) of the plane representation {x, y, z, rho}
*/
virtual double* getMax(int* cell) = 0;
/**
* Returns a sorted list of the all cells in the accumulator.
* @return a sorted multiset containing the cells as (counter, rho_index, theta_index, phi_index)
*/
virtual multiset<int*, maxcompare>* getMax() = 0;
/**
* Cleans the accumulator using a very simple sliding window strategy. A
* quadratic window is moved over the accumulator. In each step all the
* counters in the window except the maximum counter are set to 0.
* @param the size of the window
*/
virtual void peakWindow(int size) = 0;
};
/**
* The AccumulatorSimple represents the Hough Space as an array. Each dimension
* is evenly discretized. This means that when projected onto the unit sphere
* the cells vary significantly in size.
*/
class AccumulatorSimple : public Accumulator {
public:
AccumulatorSimple(ConfigFileHough myCfg);
virtual ~AccumulatorSimple();
virtual void printAccumulator();
void resetAccumulator();
bool accumulate(double theta, double phi, double rho);
void accumulate(Point p);
double* accumulateRet(Point p);
int* accumulateAPHT(Point p);
double* getMax(double &rho, double &theta, double &phi);
double* getMax(int* cell);
void peakWindow(int size);
multiset<int*, maxcompare>* getMax();
private:
int ***accumulator;
};
/**
* The AccumulatorCube maps the unit sphere onto a cube. Each face of the cube
* is evenly discretized.
*/
class AccumulatorCube : public Accumulator {
public:
AccumulatorCube(ConfigFileHough myCfg);
virtual ~AccumulatorCube();
virtual void printAccumulator();
void printAccumulator2();
void resetAccumulator();
void peakWindow(int size);
bool accumulate(double theta, double phi, double rho);
void accumulate(Point p);
double* accumulateRet(Point p);
int* accumulateAPHT(Point p);
double* getMax(double &rho, double &theta, double &phi);
double* getMax(int* cell);
multiset<int*, maxcompare>* getMax();
private:
int nrCells;
int ****accumulator;
buffer_point coords_s2_to_cell(double *n, unsigned int width);
double* coords_cube_to_s2(buffer_point lastbp, unsigned int width);
void coords_cube_for_print(buffer_point src, double** result, unsigned int width);
buffer_point lastbp;
};
/**
* The AccumulatorBall discretizes the unit sphere slice-wise. For each slice a
* a stepwidth in calculated for discretization in direction of theta is
* calculated.
*/
class AccumulatorBall : public Accumulator {
public:
AccumulatorBall(ConfigFileHough myCfg);
virtual ~AccumulatorBall();
virtual void printAccumulator();
void resetAccumulator();
bool accumulate(double theta, double phi, double rho);
void accumulate(Point p);
double* accumulateRet(Point p);
int* accumulateAPHT(Point p);
double* getMax(double &rho, double &theta, double &phi);
double* getMax(int* cell);
multiset<int*, maxcompare>* getMax();
void peakWindow(int size);
private:
int ***accumulator;
int *ballNr;
};
/**
* The AccumulatorBallI is an improvement of the AccumulatorBall. It
* discretizes the unit sphere slice-wise. For each slice a stepwidth in
* calculated for discretization in direction of theta is calculated. The
* difference to AccumulatorBall is that both of the poles are covered by on
* cell each.
*/
class AccumulatorBallI : public Accumulator {
public:
AccumulatorBallI(ConfigFileHough myCfg);
virtual ~AccumulatorBallI();
virtual void printAccumulator();
void resetAccumulator();
bool accumulate(double theta, double phi, double rho);
void accumulate(Point p);
double* accumulateRet(Point p);
int* accumulateAPHT(Point p);
double* getMax(double &rho, double &theta, double &phi);
double* getMax(int* cell);
multiset<int*, maxcompare>* getMax();
void peakWindow(int size);
private:
int ***accumulator;
int *ballNr;
double step; // in degree
double phi_top_deg;
double phi_top_rad;
};
#endif