197 lines
5.9 KiB
Text
197 lines
5.9 KiB
Text
|
|
||
|
//#define WANT_STREAM
|
||
|
|
||
|
#include "include.h"
|
||
|
#include "newmatap.h"
|
||
|
|
||
|
#include "tmt.h"
|
||
|
|
||
|
#ifdef use_namespace
|
||
|
using namespace NEWMAT;
|
||
|
#endif
|
||
|
|
||
|
ReturnMatrix Inverter(const CroutMatrix& X)
|
||
|
{
|
||
|
Matrix Y = X.i();
|
||
|
Y.Release();
|
||
|
return Y.ForReturn();
|
||
|
}
|
||
|
|
||
|
|
||
|
void trymatd()
|
||
|
{
|
||
|
Tracer et("Thirteenth test of Matrix package");
|
||
|
Tracer::PrintTrace();
|
||
|
Matrix X(5,20);
|
||
|
int i,j;
|
||
|
for (j=1;j<=20;j++) X(1,j) = j+1;
|
||
|
for (i=2;i<=5;i++) for (j=1;j<=20; j++) X(i,j) = (long)X(i-1,j) * j % 1001;
|
||
|
SymmetricMatrix S; S << X * X.t();
|
||
|
Matrix SM = X * X.t() - S;
|
||
|
Print(SM);
|
||
|
LowerTriangularMatrix L = Cholesky(S);
|
||
|
Matrix Diff = L*L.t()-S; Clean(Diff, 0.000000001);
|
||
|
Print(Diff);
|
||
|
{
|
||
|
Tracer et1("Stage 1");
|
||
|
LowerTriangularMatrix L1(5);
|
||
|
Matrix Xt = X.t(); Matrix Xt2 = Xt;
|
||
|
QRZT(X,L1);
|
||
|
Diff = L - L1; Clean(Diff,0.000000001); Print(Diff);
|
||
|
UpperTriangularMatrix Ut(5);
|
||
|
QRZ(Xt,Ut);
|
||
|
Diff = L - Ut.t(); Clean(Diff,0.000000001); Print(Diff);
|
||
|
Matrix Y(3,20);
|
||
|
for (j=1;j<=20;j++) Y(1,j) = 22-j;
|
||
|
for (i=2;i<=3;i++) for (j=1;j<=20; j++)
|
||
|
Y(i,j) = (long)Y(i-1,j) * j % 101;
|
||
|
Matrix Yt = Y.t(); Matrix M,Mt; Matrix Y2=Y;
|
||
|
QRZT(X,Y,M); QRZ(Xt,Yt,Mt);
|
||
|
Diff = Xt - X.t(); Clean(Diff,0.000000001); Print(Diff);
|
||
|
Diff = Yt - Y.t(); Clean(Diff,0.000000001); Print(Diff);
|
||
|
Diff = Mt - M.t(); Clean(Diff,0.000000001); Print(Diff);
|
||
|
Diff = Y2 * Xt2 * S.i() - M * L.i();
|
||
|
Clean(Diff,0.000000001); Print(Diff);
|
||
|
}
|
||
|
|
||
|
ColumnVector C1(5);
|
||
|
{
|
||
|
Tracer et1("Stage 2");
|
||
|
X.ReSize(5,5);
|
||
|
for (j=1;j<=5;j++) X(1,j) = j+1;
|
||
|
for (i=2;i<=5;i++) for (j=1;j<=5; j++)
|
||
|
X(i,j) = (long)X(i-1,j) * j % 1001;
|
||
|
for (i=1;i<=5;i++) C1(i) = i*i;
|
||
|
CroutMatrix A = X;
|
||
|
ColumnVector C2 = A.i() * C1; C1 = X.i() * C1;
|
||
|
X = C1 - C2; Clean(X,0.000000001); Print(X);
|
||
|
}
|
||
|
|
||
|
{
|
||
|
Tracer et1("Stage 3");
|
||
|
X.ReSize(7,7);
|
||
|
for (j=1;j<=7;j++) X(1,j) = j+1;
|
||
|
for (i=2;i<=7;i++) for (j=1;j<=7; j++)
|
||
|
X(i,j) = (long)X(i-1,j) * j % 1001;
|
||
|
C1.ReSize(7);
|
||
|
for (i=1;i<=7;i++) C1(i) = i*i;
|
||
|
RowVector R1 = C1.t();
|
||
|
Diff = R1 * X.i() - ( X.t().i() * R1.t() ).t(); Clean(Diff,0.000000001);
|
||
|
Print(Diff);
|
||
|
}
|
||
|
|
||
|
{
|
||
|
Tracer et1("Stage 4");
|
||
|
X.ReSize(5,5);
|
||
|
for (j=1;j<=5;j++) X(1,j) = j+1;
|
||
|
for (i=2;i<=5;i++) for (j=1;j<=5; j++)
|
||
|
X(i,j) = (long)X(i-1,j) * j % 1001;
|
||
|
C1.ReSize(5);
|
||
|
for (i=1;i<=5;i++) C1(i) = i*i;
|
||
|
CroutMatrix A1 = X*X;
|
||
|
ColumnVector C2 = A1.i() * C1; C1 = X.i() * C1; C1 = X.i() * C1;
|
||
|
X = C1 - C2; Clean(X,0.000000001); Print(X);
|
||
|
}
|
||
|
|
||
|
|
||
|
{
|
||
|
Tracer et1("Stage 5");
|
||
|
int n = 40;
|
||
|
SymmetricBandMatrix B(n,2); B = 0.0;
|
||
|
for (i=1; i<=n; i++)
|
||
|
{
|
||
|
B(i,i) = 6;
|
||
|
if (i<=n-1) B(i,i+1) = -4;
|
||
|
if (i<=n-2) B(i,i+2) = 1;
|
||
|
}
|
||
|
B(1,1) = 5; B(n,n) = 5;
|
||
|
SymmetricMatrix A = B;
|
||
|
ColumnVector X(n);
|
||
|
X(1) = 429;
|
||
|
for (i=2;i<=n;i++) X(i) = (long)X(i-1) * 31 % 1001;
|
||
|
X = X / 100000L;
|
||
|
// the matrix B is rather ill-conditioned so the difficulty is getting
|
||
|
// good agreement (we have chosen X very small) may not be surprising;
|
||
|
// maximum element size in B.i() is around 1400
|
||
|
ColumnVector Y1 = A.i() * X;
|
||
|
LowerTriangularMatrix C1 = Cholesky(A);
|
||
|
ColumnVector Y2 = C1.t().i() * (C1.i() * X) - Y1;
|
||
|
Clean(Y2, 0.000000001); Print(Y2);
|
||
|
UpperTriangularMatrix CU = C1.t().i();
|
||
|
LowerTriangularMatrix CL = C1.i();
|
||
|
Y2 = CU * (CL * X) - Y1;
|
||
|
Clean(Y2, 0.000000001); Print(Y2);
|
||
|
Y2 = B.i() * X - Y1; Clean(Y2, 0.000000001); Print(Y2);
|
||
|
|
||
|
LowerBandMatrix C2 = Cholesky(B);
|
||
|
Matrix M = C2 - C1; Clean(M, 0.000000001); Print(M);
|
||
|
ColumnVector Y3 = C2.t().i() * (C2.i() * X) - Y1;
|
||
|
Clean(Y3, 0.000000001); Print(Y3);
|
||
|
CU = C1.t().i();
|
||
|
CL = C1.i();
|
||
|
Y3 = CU * (CL * X) - Y1;
|
||
|
Clean(Y3, 0.000000001); Print(Y3);
|
||
|
|
||
|
Y3 = B.i() * X - Y1; Clean(Y3, 0.000000001); Print(Y3);
|
||
|
|
||
|
SymmetricMatrix AI = A.i();
|
||
|
Y2 = AI*X - Y1; Clean(Y2, 0.000000001); Print(Y2);
|
||
|
SymmetricMatrix BI = B.i();
|
||
|
BandMatrix C = B; Matrix CI = C.i();
|
||
|
M = A.i() - CI; Clean(M, 0.000000001); Print(M);
|
||
|
M = B.i() - CI; Clean(M, 0.000000001); Print(M);
|
||
|
M = AI-BI; Clean(M, 0.000000001); Print(M);
|
||
|
M = AI-CI; Clean(M, 0.000000001); Print(M);
|
||
|
|
||
|
M = A; AI << M; M = AI-A; Clean(M, 0.000000001); Print(M);
|
||
|
C = B; BI << C; M = BI-B; Clean(M, 0.000000001); Print(M);
|
||
|
|
||
|
|
||
|
}
|
||
|
|
||
|
{
|
||
|
Tracer et1("Stage 5");
|
||
|
SymmetricMatrix A(4), B(4);
|
||
|
A << 5
|
||
|
<< 1 << 4
|
||
|
<< 2 << 1 << 6
|
||
|
<< 1 << 0 << 1 << 7;
|
||
|
B << 8
|
||
|
<< 1 << 5
|
||
|
<< 1 << 0 << 9
|
||
|
<< 2 << 1 << 0 << 6;
|
||
|
LowerTriangularMatrix AB = Cholesky(A) * Cholesky(B);
|
||
|
Matrix M = Cholesky(A) * B * Cholesky(A).t() - AB*AB.t();
|
||
|
Clean(M, 0.000000001); Print(M);
|
||
|
M = A * Cholesky(B); M = M * M.t() - A * B * A;
|
||
|
Clean(M, 0.000000001); Print(M);
|
||
|
}
|
||
|
{
|
||
|
Tracer et1("Stage 6");
|
||
|
int N=49;
|
||
|
int i;
|
||
|
SymmetricBandMatrix S(N,1);
|
||
|
Matrix B(N,N+1); B=0;
|
||
|
for (i=1;i<=N;i++) { S(i,i)=1; B(i,i)=1; B(i,i+1)=-1; }
|
||
|
for (i=1;i<N; i++) S(i,i+1)=-.5;
|
||
|
DiagonalMatrix D(N+1); D = 1;
|
||
|
B = B.t()*S.i()*B - (D-1.0/(N+1))*2.0;
|
||
|
Clean(B, 0.000000001); Print(B);
|
||
|
}
|
||
|
{
|
||
|
Tracer et1("Stage 7");
|
||
|
// See if you can pass a CroutMatrix to a function
|
||
|
Matrix A(4,4);
|
||
|
A.Row(1) << 3 << 2 << -1 << 4;
|
||
|
A.Row(2) << -8 << 7 << 2 << 0;
|
||
|
A.Row(3) << 2 << -2 << 3 << 1;
|
||
|
A.Row(4) << -1 << 5 << 2 << 2;
|
||
|
CroutMatrix B = A;
|
||
|
Matrix C = A * Inverter(B) - IdentityMatrix(4);
|
||
|
Clean(C, 0.000000001); Print(C);
|
||
|
}
|
||
|
|
||
|
|
||
|
// cout << "\nEnd of Thirteenth test\n";
|
||
|
}
|