3dpcp/.svn/pristine/b8/b8ede20dc0fb5b127589549c20b2cb8259a9d85e.svn-base

1038 lines
30 KiB
Text
Raw Normal View History

2012-09-16 12:33:11 +00:00
/**************************************************************************
algebra3.cpp, algebra3.h - C++ Vector and Matrix Algebra routines
There are three vector classes and two matrix classes: vec2, vec3,
vec4, mat3, and mat4.
All the standard arithmetic operations are defined, with '*'
for dot product of two vectors and multiplication of two matrices,
and '^' for cross product of two vectors.
Additional functions include length(), normalize(), homogenize for
vectors, and print(), set(), apply() for all classes.
There is a function transpose() for matrices, but note that it
does not actually change the matrix,
When multiplied with a matrix, a vector is treated as a row vector
if it precedes the matrix (v*M), and as a column vector if it
follows the matrix (M*v).
Matrices are stored in row-major form.
A vector of one dimension (2d, 3d, or 4d) can be cast to a vector
of a higher or lower dimension. If casting to a higher dimension,
the new component is set by default to 1.0, unless a value is
specified:
vec3 a(1.0, 2.0, 3.0 );
vec4 b( a, 4.0 ); // now b == {1.0, 2.0, 3.0, 4.0};
When casting to a lower dimension, the vector is homogenized in
the lower dimension. E.g., if a 4d {X,Y,Z,W} is cast to 3d, the
resulting vector is {X/W, Y/W, Z/W}. It is up to the user to
insure the fourth component is not zero before casting.
There are also the following function for building matrices:
identity2D(), translation2D(), rotation2D(),
scaling2D(), identity3D(), translation3D(),
rotation3D(), rotation3Drad(), scaling3D(),
perspective3D()
---------------------------------------------------------------------
Author: Jean-Francois DOUEg
Revised: Paul Rademacher
Version 3.2 - Feb 1998
**************************************************************************/
#include <math.h>
#include "algebra3.h"
#include <ctype.h>
/****************************************************************
* *
* vec2 Member functions *
* *
****************************************************************/
/******************** vec2 CONSTRUCTORS ********************/
vec2::vec2(void)
{n[VX] = n[VY] = 0.0; }
vec2::vec2(const float x, const float y)
{ n[VX] = x; n[VY] = y; }
vec2::vec2(const float d)
{ n[VX] = n[VY] = d; }
vec2::vec2(const vec2& v)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; }
vec2::vec2(const vec3& v) // it is up to caller to avoid divide-by-zero
{ n[VX] = v.n[VX]/v.n[VZ]; n[VY] = v.n[VY]/v.n[VZ]; };
vec2::vec2(const vec3& v, int dropAxis) {
switch (dropAxis) {
case VX: n[VX] = v.n[VY]; n[VY] = v.n[VZ]; break;
case VY: n[VX] = v.n[VX]; n[VY] = v.n[VZ]; break;
default: n[VX] = v.n[VX]; n[VY] = v.n[VY]; break;
}
}
/******************** vec2 ASSIGNMENT OPERATORS ******************/
vec2& vec2::operator = (const vec2& v)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; return *this; }
vec2& vec2::operator += ( const vec2& v )
{ n[VX] += v.n[VX]; n[VY] += v.n[VY]; return *this; }
vec2& vec2::operator -= ( const vec2& v )
{ n[VX] -= v.n[VX]; n[VY] -= v.n[VY]; return *this; }
vec2& vec2::operator *= ( const float d )
{ n[VX] *= d; n[VY] *= d; return *this; }
vec2& vec2::operator /= ( const float d )
{ float d_inv = 1./d; n[VX] *= d_inv; n[VY] *= d_inv; return *this; }
float& vec2::operator [] ( int i) {
if (i < VX || i > VY)
//VEC_ERROR("vec2 [] operator: illegal access; index = " << i << '\n')
VEC_ERROR("vec2 [] operator: illegal access" );
return n[i];
}
/******************** vec2 SPECIAL FUNCTIONS ********************/
float vec2::length(void)
{ return sqrt(length2()); }
float vec2::length2(void)
{ return n[VX]*n[VX] + n[VY]*n[VY]; }
vec2& vec2::normalize(void) // it is up to caller to avoid divide-by-zero
{ *this /= length(); return *this; }
vec2& vec2::apply(V_FCT_PTR fct)
{ n[VX] = (*fct)(n[VX]); n[VY] = (*fct)(n[VY]); return *this; }
void vec2::set( float x, float y )
{ n[VX] = x; n[VY] = y; }
/******************** vec2 FRIENDS *****************************/
vec2 operator - (const vec2& a)
{ return vec2(-a.n[VX],-a.n[VY]); }
vec2 operator + (const vec2& a, const vec2& b)
{ return vec2(a.n[VX]+ b.n[VX], a.n[VY] + b.n[VY]); }
vec2 operator - (const vec2& a, const vec2& b)
{ return vec2(a.n[VX]-b.n[VX], a.n[VY]-b.n[VY]); }
vec2 operator * (const vec2& a, const float d)
{ return vec2(d*a.n[VX], d*a.n[VY]); }
vec2 operator * (const float d, const vec2& a)
{ return a*d; }
vec2 operator * (const mat3& a, const vec2& v) {
vec3 av;
av.n[VX] = a.v[0].n[VX]*v.n[VX] + a.v[0].n[VY]*v.n[VY] + a.v[0].n[VZ];
av.n[VY] = a.v[1].n[VX]*v.n[VX] + a.v[1].n[VY]*v.n[VY] + a.v[1].n[VZ];
av.n[VZ] = a.v[2].n[VX]*v.n[VX] + a.v[2].n[VY]*v.n[VY] + a.v[2].n[VZ];
return av;
}
vec2 operator * (const vec2& v, mat3& a)
{ return a.transpose() * v; }
vec3 operator * (const mat3& a, const vec3& v) {
vec3 av;
av.n[VX] =
a.v[0].n[VX]*v.n[VX] + a.v[0].n[VY]*v.n[VY] + a.v[0].n[VZ]*v.n[VZ];
av.n[VY] =
a.v[1].n[VX]*v.n[VX] + a.v[1].n[VY]*v.n[VY] + a.v[1].n[VZ]*v.n[VZ];
av.n[VZ] =
a.v[2].n[VX]*v.n[VX] + a.v[2].n[VY]*v.n[VY] + a.v[2].n[VZ]*v.n[VZ];
return av;
}
vec3 operator * (const vec3& v, mat3& a)
{ return a.transpose() * v; }
float operator * (const vec2& a, const vec2& b)
{ return (a.n[VX]*b.n[VX] + a.n[VY]*b.n[VY]); }
vec2 operator / (const vec2& a, const float d)
{ float d_inv = 1./d; return vec2(a.n[VX]*d_inv, a.n[VY]*d_inv); }
vec3 operator ^ (const vec2& a, const vec2& b)
{ return vec3(0.0, 0.0, a.n[VX] * b.n[VY] - b.n[VX] * a.n[VY]); }
int operator == (const vec2& a, const vec2& b)
{ return (a.n[VX] == b.n[VX]) && (a.n[VY] == b.n[VY]); }
int operator != (const vec2& a, const vec2& b)
{ return !(a == b); }
/*ostream& operator << (ostream& s, vec2& v)
{ return s << "| " << v.n[VX] << ' ' << v.n[VY] << " |"; }
*/
/*istream& operator >> (istream& s, vec2& v) {
vec2 v_tmp;
char c = ' ';
while (isspace(c))
s >> c;
// The vectors can be formatted either as x y or | x y |
if (c == '|') {
s >> v_tmp[VX] >> v_tmp[VY];
while (s >> c && isspace(c)) ;
if (c != '|')
;//s.set(_bad);
}
else {
s.putback(c);
s >> v_tmp[VX] >> v_tmp[VY];
}
if (s)
v = v_tmp;
return s;
}
*/
void swap(vec2& a, vec2& b)
{ vec2 tmp(a); a = b; b = tmp; }
vec2 min_vec(const vec2& a, const vec2& b)
{ return vec2(MIN(a.n[VX], b.n[VX]), MIN(a.n[VY], b.n[VY])); }
vec2 max_vec(const vec2& a, const vec2& b)
{ return vec2(MAX(a.n[VX], b.n[VX]), MAX(a.n[VY], b.n[VY])); }
vec2 prod(const vec2& a, const vec2& b)
{ return vec2(a.n[VX] * b.n[VX], a.n[VY] * b.n[VY]); }
/****************************************************************
* *
* vec3 Member functions *
* *
****************************************************************/
// CONSTRUCTORS
vec3::vec3(void)
{n[VX] = n[VY] = n[VZ] = 0.0;}
vec3::vec3(const float x, const float y, const float z)
{ n[VX] = x; n[VY] = y; n[VZ] = z; }
vec3::vec3(const float d)
{ n[VX] = n[VY] = n[VZ] = d; }
vec3::vec3(const vec3& v)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; }
vec3::vec3(const vec2& v)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = 1.0; }
vec3::vec3(const vec2& v, float d)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = d; }
vec3::vec3(const vec4& v) // it is up to caller to avoid divide-by-zero
{ n[VX] = v.n[VX] / v.n[VW]; n[VY] = v.n[VY] / v.n[VW];
n[VZ] = v.n[VZ] / v.n[VW]; }
vec3::vec3(const vec4& v, int dropAxis) {
switch (dropAxis) {
case VX: n[VX] = v.n[VY]; n[VY] = v.n[VZ]; n[VZ] = v.n[VW]; break;
case VY: n[VX] = v.n[VX]; n[VY] = v.n[VZ]; n[VZ] = v.n[VW]; break;
case VZ: n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VW]; break;
default: n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; break;
}
}
// ASSIGNMENT OPERATORS
vec3& vec3::operator = (const vec3& v)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; return *this; }
vec3& vec3::operator += ( const vec3& v )
{ n[VX] += v.n[VX]; n[VY] += v.n[VY]; n[VZ] += v.n[VZ]; return *this; }
vec3& vec3::operator -= ( const vec3& v )
{ n[VX] -= v.n[VX]; n[VY] -= v.n[VY]; n[VZ] -= v.n[VZ]; return *this; }
vec3& vec3::operator *= ( const float d )
{ n[VX] *= d; n[VY] *= d; n[VZ] *= d; return *this; }
vec3& vec3::operator /= ( const float d )
{ float d_inv = 1./d; n[VX] *= d_inv; n[VY] *= d_inv; n[VZ] *= d_inv;
return *this; }
float& vec3::operator [] ( int i) {
if (i < VX || i > VZ)
//VEC_ERROR("vec3 [] operator: illegal access; index = " << i << '\n')
VEC_ERROR("vec3 [] operator: illegal access" );
return n[i];
}
// SPECIAL FUNCTIONS
float vec3::length(void)
{ return sqrt(length2()); }
float vec3::length2(void)
{ return n[VX]*n[VX] + n[VY]*n[VY] + n[VZ]*n[VZ]; }
vec3& vec3::normalize(void) // it is up to caller to avoid divide-by-zero
{ *this /= length(); return *this; }
vec3& vec3::homogenize(void) // it is up to caller to avoid divide-by-zero
{ n[VX] /= n[VZ]; n[VY] /= n[VZ]; n[VZ] = 1.0; return *this; }
vec3& vec3::apply(V_FCT_PTR fct)
{ n[VX] = (*fct)(n[VX]); n[VY] = (*fct)(n[VY]); n[VZ] = (*fct)(n[VZ]);
return *this; }
void vec3::set( float x, float y, float z ) // set vector
{ n[VX] = x; n[VY] = y; n[VZ] = z; }
void vec3::print( FILE *file, char *name ) // print vector to a file
{
fprintf( file, "%s: <%f, %f, %f>\n", name, n[VX], n[VY], n[VZ] );
}
// FRIENDS
vec3 operator - (const vec3& a)
{ return vec3(-a.n[VX],-a.n[VY],-a.n[VZ]); }
vec3 operator + (const vec3& a, const vec3& b)
{ return vec3(a.n[VX]+ b.n[VX], a.n[VY] + b.n[VY], a.n[VZ] + b.n[VZ]); }
vec3 operator - (const vec3& a, const vec3& b)
{ return vec3(a.n[VX]-b.n[VX], a.n[VY]-b.n[VY], a.n[VZ]-b.n[VZ]); }
vec3 operator * (const vec3& a, const float d)
{ return vec3(d*a.n[VX], d*a.n[VY], d*a.n[VZ]); }
vec3 operator * (const float d, const vec3& a)
{ return a*d; }
vec3 operator * (const mat4& a, const vec3& v)
{ return a * vec4(v); }
vec3 operator * (const vec3& v, mat4& a)
{ return a.transpose() * v; }
float operator * (const vec3& a, const vec3& b)
{ return (a.n[VX]*b.n[VX] + a.n[VY]*b.n[VY] + a.n[VZ]*b.n[VZ]); }
vec3 operator / (const vec3& a, const float d)
{ float d_inv = 1./d; return vec3(a.n[VX]*d_inv, a.n[VY]*d_inv,
a.n[VZ]*d_inv); }
vec3 operator ^ (const vec3& a, const vec3& b) {
return vec3(a.n[VY]*b.n[VZ] - a.n[VZ]*b.n[VY],
a.n[VZ]*b.n[VX] - a.n[VX]*b.n[VZ],
a.n[VX]*b.n[VY] - a.n[VY]*b.n[VX]);
}
int operator == (const vec3& a, const vec3& b)
{ return (a.n[VX] == b.n[VX]) && (a.n[VY] == b.n[VY]) && (a.n[VZ] == b.n[VZ]);
}
int operator != (const vec3& a, const vec3& b)
{ return !(a == b); }
/*ostream& operator << (ostream& s, vec3& v)
{ return s << "| " << v.n[VX] << ' ' << v.n[VY] << ' ' << v.n[VZ] << " |"; }
istream& operator >> (istream& s, vec3& v) {
vec3 v_tmp;
char c = ' ';
while (isspace(c))
s >> c;
// The vectors can be formatted either as x y z or | x y z |
if (c == '|') {
s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ];
while (s >> c && isspace(c)) ;
if (c != '|')
;//s.set(_bad);
}
else {
s.putback(c);
s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ];
}
if (s)
v = v_tmp;
return s;
}
*/
void swap(vec3& a, vec3& b)
{ vec3 tmp(a); a = b; b = tmp; }
vec3 min_vec(const vec3& a, const vec3& b)
{ return vec3(MIN(a.n[VX], b.n[VX]), MIN(a.n[VY], b.n[VY]), MIN(a.n[VZ],
b.n[VZ])); }
vec3 max_vec(const vec3& a, const vec3& b)
{ return vec3(MAX(a.n[VX], b.n[VX]), MAX(a.n[VY], b.n[VY]), MAX(a.n[VZ],
b.n[VZ])); }
vec3 prod(const vec3& a, const vec3& b)
{ return vec3(a.n[VX] * b.n[VX], a.n[VY] * b.n[VY], a.n[VZ] * b.n[VZ]); }
/****************************************************************
* *
* vec4 Member functions *
* *
****************************************************************/
// CONSTRUCTORS
vec4::vec4(void)
{n[VX] = n[VY] = n[VZ] = 0.0; n[VW] = 1.0; }
vec4::vec4(const float x, const float y, const float z, const float w)
{ n[VX] = x; n[VY] = y; n[VZ] = z; n[VW] = w; }
vec4::vec4(const float d)
{ n[VX] = n[VY] = n[VZ] = n[VW] = d; }
vec4::vec4(const vec4& v)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; n[VW] = v.n[VW]; }
vec4::vec4(const vec3& v)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; n[VW] = 1.0; }
vec4::vec4(const vec3& v, const float d)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; n[VW] = d; }
// ASSIGNMENT OPERATORS
vec4& vec4::operator = (const vec4& v)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; n[VW] = v.n[VW];
return *this; }
vec4& vec4::operator += ( const vec4& v )
{ n[VX] += v.n[VX]; n[VY] += v.n[VY]; n[VZ] += v.n[VZ]; n[VW] += v.n[VW];
return *this; }
vec4& vec4::operator -= ( const vec4& v )
{ n[VX] -= v.n[VX]; n[VY] -= v.n[VY]; n[VZ] -= v.n[VZ]; n[VW] -= v.n[VW];
return *this; }
vec4& vec4::operator *= ( const float d )
{ n[VX] *= d; n[VY] *= d; n[VZ] *= d; n[VW] *= d; return *this; }
vec4& vec4::operator /= ( const float d )
{ float d_inv = 1./d; n[VX] *= d_inv; n[VY] *= d_inv; n[VZ] *= d_inv;
n[VW] *= d_inv; return *this; }
float& vec4::operator [] ( int i) {
if (i < VX || i > VW)
//VEC_ERROR("vec4 [] operator: illegal access; index = " << i << '\n')
VEC_ERROR("vec4 [] operator: illegal access" );
return n[i];
}
// SPECIAL FUNCTIONS
float vec4::length(void)
{ return sqrt(length2()); }
float vec4::length2(void)
{ return n[VX]*n[VX] + n[VY]*n[VY] + n[VZ]*n[VZ] + n[VW]*n[VW]; }
vec4& vec4::normalize(void) // it is up to caller to avoid divide-by-zero
{ *this /= length(); return *this; }
vec4& vec4::homogenize(void) // it is up to caller to avoid divide-by-zero
{ n[VX] /= n[VW]; n[VY] /= n[VW]; n[VZ] /= n[VW]; n[VW] = 1.0; return *this; }
vec4& vec4::apply(V_FCT_PTR fct)
{ n[VX] = (*fct)(n[VX]); n[VY] = (*fct)(n[VY]); n[VZ] = (*fct)(n[VZ]);
n[VW] = (*fct)(n[VW]); return *this; }
void vec4::print( FILE *file, char *name ) // print vector to a file
{
fprintf( file, "%s: <%f, %f, %f, %f>\n", name, n[VX], n[VY], n[VZ], n[VW] );
}
void vec4::set( float x, float y, float z, float a )
{
n[0] = x; n[1] = y; n[2] = z; n[3] = a;
}
// FRIENDS
vec4 operator - (const vec4& a)
{ return vec4(-a.n[VX],-a.n[VY],-a.n[VZ],-a.n[VW]); }
vec4 operator + (const vec4& a, const vec4& b)
{ return vec4(a.n[VX] + b.n[VX], a.n[VY] + b.n[VY], a.n[VZ] + b.n[VZ],
a.n[VW] + b.n[VW]); }
vec4 operator - (const vec4& a, const vec4& b)
{ return vec4(a.n[VX] - b.n[VX], a.n[VY] - b.n[VY], a.n[VZ] - b.n[VZ],
a.n[VW] - b.n[VW]); }
vec4 operator * (const vec4& a, const float d)
{ return vec4(d*a.n[VX], d*a.n[VY], d*a.n[VZ], d*a.n[VW] ); }
vec4 operator * (const float d, const vec4& a)
{ return a*d; }
vec4 operator * (const mat4& a, const vec4& v) {
#define ROWCOL(i) a.v[i].n[0]*v.n[VX] + a.v[i].n[1]*v.n[VY] \
+ a.v[i].n[2]*v.n[VZ] + a.v[i].n[3]*v.n[VW]
return vec4(ROWCOL(0), ROWCOL(1), ROWCOL(2), ROWCOL(3));
#undef ROWCOL
}
vec4 operator * (const vec4& v, mat4& a)
{ return a.transpose() * v; }
float operator * (const vec4& a, const vec4& b)
{ return (a.n[VX]*b.n[VX] + a.n[VY]*b.n[VY] + a.n[VZ]*b.n[VZ] +
a.n[VW]*b.n[VW]); }
vec4 operator / (const vec4& a, const float d)
{ float d_inv = 1./d; return vec4(a.n[VX]*d_inv, a.n[VY]*d_inv, a.n[VZ]*d_inv,
a.n[VW]*d_inv); }
int operator == (const vec4& a, const vec4& b)
{ return (a.n[VX] == b.n[VX]) && (a.n[VY] == b.n[VY]) && (a.n[VZ] == b.n[VZ])
&& (a.n[VW] == b.n[VW]); }
int operator != (const vec4& a, const vec4& b)
{ return !(a == b); }
/*ostream& operator << (ostream& s, vec4& v)
{ return s << "| " << v.n[VX] << ' ' << v.n[VY] << ' ' << v.n[VZ] << ' '
<< v.n[VW] << " |"; }
istream& operator >> (istream& s, vec4& v) {
vec4 v_tmp;
char c = ' ';
while (isspace(c))
s >> c;
// The vectors can be formatted either as x y z w or | x y z w |
if (c == '|') {
s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ] >> v_tmp[VW];
while (s >> c && isspace(c)) ;
if (c != '|')
;//s.set(_bad);
}
else {
s.putback(c);
s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ] >> v_tmp[VW];
}
if (s)
v = v_tmp;
return s;
}
*/
void swap(vec4& a, vec4& b)
{ vec4 tmp(a); a = b; b = tmp; }
vec4 min_vec(const vec4& a, const vec4& b)
{ return vec4(MIN(a.n[VX], b.n[VX]), MIN(a.n[VY], b.n[VY]), MIN(a.n[VZ],
b.n[VZ]), MIN(a.n[VW], b.n[VW])); }
vec4 max_vec(const vec4& a, const vec4& b)
{ return vec4(MAX(a.n[VX], b.n[VX]), MAX(a.n[VY], b.n[VY]), MAX(a.n[VZ],
b.n[VZ]), MAX(a.n[VW], b.n[VW])); }
vec4 prod(const vec4& a, const vec4& b)
{ return vec4(a.n[VX] * b.n[VX], a.n[VY] * b.n[VY], a.n[VZ] * b.n[VZ],
a.n[VW] * b.n[VW]); }
/****************************************************************
* *
* mat3 member functions *
* *
****************************************************************/
// CONSTRUCTORS
mat3::mat3(void) { *this = identity2D(); }
mat3::mat3(const vec3& v0, const vec3& v1, const vec3& v2)
{ this->set( v0, v1, v2 ); };
mat3::mat3(const float d)
{ v[0] = v[1] = v[2] = vec3(d); }
mat3::mat3(const mat3& m)
{ v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; }
// ASSIGNMENT OPERATORS
mat3& mat3::operator = ( const mat3& m )
{ v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; return *this; }
mat3& mat3::operator += ( const mat3& m )
{ v[0] += m.v[0]; v[1] += m.v[1]; v[2] += m.v[2]; return *this; }
mat3& mat3::operator -= ( const mat3& m )
{ v[0] -= m.v[0]; v[1] -= m.v[1]; v[2] -= m.v[2]; return *this; }
mat3& mat3::operator *= ( const float d )
{ v[0] *= d; v[1] *= d; v[2] *= d; return *this; }
mat3& mat3::operator /= ( const float d )
{ v[0] /= d; v[1] /= d; v[2] /= d; return *this; }
vec3& mat3::operator [] ( int i) {
if (i < VX || i > VZ)
//VEC_ERROR("mat3 [] operator: illegal access; index = " << i << '\n')
VEC_ERROR("mat3 [] operator: illegal access" );
return v[i];
}
void mat3::set( const vec3& v0, const vec3& v1, const vec3& v2 ) {
v[0] = v0; v[1] = v1; v[2] = v2;
}
// SPECIAL FUNCTIONS
mat3 mat3::transpose(void) {
return mat3(vec3(v[0][0], v[1][0], v[2][0]),
vec3(v[0][1], v[1][1], v[2][1]),
vec3(v[0][2], v[1][2], v[2][2]));
}
mat3 mat3::inverse(void) // Gauss-Jordan elimination with partial pivoting
{
mat3 a(*this), // As a evolves from original mat into identity
b(identity2D()); // b evolves from identity into inverse(a)
int i, j, i1;
// Loop over cols of a from left to right, eliminating above and below diag
for (j=0; j<3; j++) { // Find largest pivot in column j among rows j..2
i1 = j; // Row with largest pivot candidate
for (i=j+1; i<3; i++)
if (fabs(a.v[i].n[j]) > fabs(a.v[i1].n[j]))
i1 = i;
// Swap rows i1 and j in a and b to put pivot on diagonal
swap(a.v[i1], a.v[j]);
swap(b.v[i1], b.v[j]);
// Scale row j to have a unit diagonal
if (a.v[j].n[j]==0.)
VEC_ERROR("mat3::inverse: singular matrix; can't invert\n");
b.v[j] /= a.v[j].n[j];
a.v[j] /= a.v[j].n[j];
// Eliminate off-diagonal elems in col j of a, doing identical ops to b
for (i=0; i<3; i++)
if (i!=j) {
b.v[i] -= a.v[i].n[j]*b.v[j];
a.v[i] -= a.v[i].n[j]*a.v[j];
}
}
return b;
}
mat3& mat3::apply(V_FCT_PTR fct) {
v[VX].apply(fct);
v[VY].apply(fct);
v[VZ].apply(fct);
return *this;
}
// FRIENDS
mat3 operator - (const mat3& a)
{ return mat3(-a.v[0], -a.v[1], -a.v[2]); }
mat3 operator + (const mat3& a, const mat3& b)
{ return mat3(a.v[0] + b.v[0], a.v[1] + b.v[1], a.v[2] + b.v[2]); }
mat3 operator - (const mat3& a, const mat3& b)
{ return mat3(a.v[0] - b.v[0], a.v[1] - b.v[1], a.v[2] - b.v[2]); }
mat3 operator * (mat3& a, mat3& b) {
#define ROWCOL(i, j) \
a.v[i].n[0]*b.v[0][j] + a.v[i].n[1]*b.v[1][j] + a.v[i].n[2]*b.v[2][j]
return mat3(vec3(ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2)),
vec3(ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2)),
vec3(ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2)));
#undef ROWCOL
}
mat3 operator * (const mat3& a, const float d)
{ return mat3(a.v[0] * d, a.v[1] * d, a.v[2] * d); }
mat3 operator * (const float d, const mat3& a)
{ return a*d; }
mat3 operator / (const mat3& a, const float d)
{ return mat3(a.v[0] / d, a.v[1] / d, a.v[2] / d); }
int operator == (const mat3& a, const mat3& b)
{ return (a.v[0] == b.v[0]) && (a.v[1] == b.v[1]) && (a.v[2] == b.v[2]); }
int operator != (const mat3& a, const mat3& b)
{ return !(a == b); }
/*ostream& operator << (ostream& s, mat3& m)
{ return s << m.v[VX] << '\n' << m.v[VY] << '\n' << m.v[VZ]; }
istream& operator >> (istream& s, mat3& m) {
mat3 m_tmp;
s >> m_tmp[VX] >> m_tmp[VY] >> m_tmp[VZ];
if (s)
m = m_tmp;
return s;
}
*/
void swap(mat3& a, mat3& b)
{ mat3 tmp(a); a = b; b = tmp; }
void mat3::print( FILE *file, char *name )
{
int i, j;
fprintf( stderr, "%s:\n", name );
for( i = 0; i < 3; i++ )
{
fprintf( stderr, " " );
for( j = 0; j < 3; j++ )
{
fprintf( stderr, "%f ", v[i][j] );
}
fprintf( stderr, "\n" );
}
}
/****************************************************************
* *
* mat4 member functions *
* *
****************************************************************/
// CONSTRUCTORS
mat4::mat4(void) { *this = identity3D();}
mat4::mat4(const vec4& v0, const vec4& v1, const vec4& v2, const vec4& v3)
{ v[0] = v0; v[1] = v1; v[2] = v2; v[3] = v3; }
mat4::mat4(const float d)
{ v[0] = v[1] = v[2] = v[3] = vec4(d); }
mat4::mat4(const mat4& m)
{ v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; v[3] = m.v[3]; }
mat4::mat4(const float a00, const float a01, const float a02, const float a03,
const float a10, const float a11, const float a12, const float a13,
const float a20, const float a21, const float a22, const float a23,
const float a30, const float a31, const float a32, const float a33 )
{
v[0][0] = a00; v[0][1] = a01; v[0][2] = a02; v[0][3] = a03;
v[1][0] = a10; v[1][1] = a11; v[1][2] = a12; v[1][3] = a13;
v[2][0] = a20; v[2][1] = a21; v[2][2] = a22; v[2][3] = a23;
v[3][0] = a30; v[3][1] = a31; v[3][2] = a32; v[3][3] = a33;
}
// ASSIGNMENT OPERATORS
mat4& mat4::operator = ( const mat4& m )
{ v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; v[3] = m.v[3];
return *this; }
mat4& mat4::operator += ( const mat4& m )
{ v[0] += m.v[0]; v[1] += m.v[1]; v[2] += m.v[2]; v[3] += m.v[3];
return *this; }
mat4& mat4::operator -= ( const mat4& m )
{ v[0] -= m.v[0]; v[1] -= m.v[1]; v[2] -= m.v[2]; v[3] -= m.v[3];
return *this; }
mat4& mat4::operator *= ( const float d )
{ v[0] *= d; v[1] *= d; v[2] *= d; v[3] *= d; return *this; }
mat4& mat4::operator /= ( const float d )
{ v[0] /= d; v[1] /= d; v[2] /= d; v[3] /= d; return *this; }
vec4& mat4::operator [] ( int i) {
if (i < VX || i > VW)
//VEC_ERROR("mat4 [] operator: illegal access; index = " << i << '\n')
VEC_ERROR("mat4 [] operator: illegal access" );
return v[i];
}
// SPECIAL FUNCTIONS;
mat4 mat4::transpose(void) {
return mat4(vec4(v[0][0], v[1][0], v[2][0], v[3][0]),
vec4(v[0][1], v[1][1], v[2][1], v[3][1]),
vec4(v[0][2], v[1][2], v[2][2], v[3][2]),
vec4(v[0][3], v[1][3], v[2][3], v[3][3]));
}
mat4 mat4::inverse(void) // Gauss-Jordan elimination with partial pivoting
{
mat4 a(*this), // As a evolves from original mat into identity
b(identity3D()); // b evolves from identity into inverse(a)
int i, j, i1;
// Loop over cols of a from left to right, eliminating above and below diag
for (j=0; j<4; j++) { // Find largest pivot in column j among rows j..3
i1 = j; // Row with largest pivot candidate
for (i=j+1; i<4; i++)
if (fabs(a.v[i].n[j]) > fabs(a.v[i1].n[j]))
i1 = i;
// Swap rows i1 and j in a and b to put pivot on diagonal
swap(a.v[i1], a.v[j]);
swap(b.v[i1], b.v[j]);
// Scale row j to have a unit diagonal
if (a.v[j].n[j]==0.)
VEC_ERROR("mat4::inverse: singular matrix; can't invert\n");
b.v[j] /= a.v[j].n[j];
a.v[j] /= a.v[j].n[j];
// Eliminate off-diagonal elems in col j of a, doing identical ops to b
for (i=0; i<4; i++)
if (i!=j) {
b.v[i] -= a.v[i].n[j]*b.v[j];
a.v[i] -= a.v[i].n[j]*a.v[j];
}
}
return b;
}
mat4& mat4::apply(V_FCT_PTR fct)
{ v[VX].apply(fct); v[VY].apply(fct); v[VZ].apply(fct); v[VW].apply(fct);
return *this; }
void mat4::print( FILE *file, char *name )
{
int i, j;
fprintf( stderr, "%s:\n", name );
for( i = 0; i < 4; i++ )
{
fprintf( stderr, " " );
for( j = 0; j < 4; j++ )
{
fprintf( stderr, "%f ", v[i][j] );
}
fprintf( stderr, "\n" );
}
}
void mat4::swap_rows( int i, int j )
{
vec4 t;
t = v[i];
v[i] = v[j];
v[j] = t;
}
void mat4::swap_cols( int i, int j )
{
float t;
int k;
for(k=0; k<4; k++ ) {
t = v[k][i];
v[k][i] = v[k][j];
v[k][j] = t;
}
}
// FRIENDS
mat4 operator - (const mat4& a)
{ return mat4(-a.v[0], -a.v[1], -a.v[2], -a.v[3]); }
mat4 operator + (const mat4& a, const mat4& b)
{ return mat4(a.v[0] + b.v[0], a.v[1] + b.v[1], a.v[2] + b.v[2],
a.v[3] + b.v[3]);
}
mat4 operator - (const mat4& a, const mat4& b)
{ return mat4(a.v[0] - b.v[0], a.v[1] - b.v[1], a.v[2] - b.v[2], a.v[3] - b.v[3]); }
mat4 operator * (mat4& a, mat4& b) {
#define ROWCOL(i, j) a.v[i].n[0]*b.v[0][j] + a.v[i].n[1]*b.v[1][j] + \
a.v[i].n[2]*b.v[2][j] + a.v[i].n[3]*b.v[3][j]
return mat4(
vec4(ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2), ROWCOL(0,3)),
vec4(ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2), ROWCOL(1,3)),
vec4(ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2), ROWCOL(2,3)),
vec4(ROWCOL(3,0), ROWCOL(3,1), ROWCOL(3,2), ROWCOL(3,3))
);
}
mat4 operator * (const mat4& a, const float d)
{ return mat4(a.v[0] * d, a.v[1] * d, a.v[2] * d, a.v[3] * d); }
mat4 operator * (const float d, const mat4& a)
{ return a*d; }
mat4 operator / (const mat4& a, const float d)
{ return mat4(a.v[0] / d, a.v[1] / d, a.v[2] / d, a.v[3] / d); }
int operator == (const mat4& a, const mat4& b)
{ return ((a.v[0] == b.v[0]) && (a.v[1] == b.v[1]) && (a.v[2] == b.v[2]) &&
(a.v[3] == b.v[3])); }
int operator != (const mat4& a, const mat4& b)
{ return !(a == b); }
/*ostream& operator << (ostream& s, mat4& m)
{ return s << m.v[VX] << '\n' << m.v[VY] << '\n' << m.v[VZ] << '\n' << m.v[VW]; }
istream& operator >> (istream& s, mat4& m)
{
mat4 m_tmp;
s >> m_tmp[VX] >> m_tmp[VY] >> m_tmp[VZ] >> m_tmp[VW];
if (s)
m = m_tmp;
return s;
}
*/
void swap(mat4& a, mat4& b)
{ mat4 tmp(a); a = b; b = tmp; }
/****************************************************************
* *
* 2D functions and 3D functions *
* *
****************************************************************/
mat3 identity2D(void)
{ return mat3(vec3(1.0, 0.0, 0.0),
vec3(0.0, 1.0, 0.0),
vec3(0.0, 0.0, 1.0)); }
mat3 translation2D(vec2& v)
{ return mat3(vec3(1.0, 0.0, v[VX]),
vec3(0.0, 1.0, v[VY]),
vec3(0.0, 0.0, 1.0)); }
mat3 rotation2D(vec2& Center, const float angleDeg) {
float angleRad = angleDeg * M_PI / 180.0,
c = cos(angleRad),
s = sin(angleRad);
return mat3(vec3(c, -s, Center[VX] * (1.0-c) + Center[VY] * s),
vec3(s, c, Center[VY] * (1.0-c) - Center[VX] * s),
vec3(0.0, 0.0, 1.0));
}
mat3 scaling2D(vec2& scaleVector)
{ return mat3(vec3(scaleVector[VX], 0.0, 0.0),
vec3(0.0, scaleVector[VY], 0.0),
vec3(0.0, 0.0, 1.0)); }
mat4 identity3D(void)
{ return mat4(vec4(1.0, 0.0, 0.0, 0.0),
vec4(0.0, 1.0, 0.0, 0.0),
vec4(0.0, 0.0, 1.0, 0.0),
vec4(0.0, 0.0, 0.0, 1.0)); }
mat4 translation3D(vec3& v)
{ return mat4(vec4(1.0, 0.0, 0.0, v[VX]),
vec4(0.0, 1.0, 0.0, v[VY]),
vec4(0.0, 0.0, 1.0, v[VZ]),
vec4(0.0, 0.0, 0.0, 1.0)); }
mat4 rotation3D(vec3& Axis, const float angleDeg) {
float angleRad = angleDeg * M_PI / 180.0,
c = cos(angleRad),
s = sin(angleRad),
t = 1.0 - c;
Axis.normalize();
return mat4(vec4(t * Axis[VX] * Axis[VX] + c,
t * Axis[VX] * Axis[VY] - s * Axis[VZ],
t * Axis[VX] * Axis[VZ] + s * Axis[VY],
0.0),
vec4(t * Axis[VX] * Axis[VY] + s * Axis[VZ],
t * Axis[VY] * Axis[VY] + c,
t * Axis[VY] * Axis[VZ] - s * Axis[VX],
0.0),
vec4(t * Axis[VX] * Axis[VZ] - s * Axis[VY],
t * Axis[VY] * Axis[VZ] + s * Axis[VX],
t * Axis[VZ] * Axis[VZ] + c,
0.0),
vec4(0.0, 0.0, 0.0, 1.0));
}
mat4 rotation3Drad(vec3& Axis, const float angleRad) {
float c = cos(angleRad),
s = sin(angleRad),
t = 1.0 - c;
Axis.normalize();
return mat4(vec4(t * Axis[VX] * Axis[VX] + c,
t * Axis[VX] * Axis[VY] - s * Axis[VZ],
t * Axis[VX] * Axis[VZ] + s * Axis[VY],
0.0),
vec4(t * Axis[VX] * Axis[VY] + s * Axis[VZ],
t * Axis[VY] * Axis[VY] + c,
t * Axis[VY] * Axis[VZ] - s * Axis[VX],
0.0),
vec4(t * Axis[VX] * Axis[VZ] - s * Axis[VY],
t * Axis[VY] * Axis[VZ] + s * Axis[VX],
t * Axis[VZ] * Axis[VZ] + c,
0.0),
vec4(0.0, 0.0, 0.0, 1.0));
}
mat4 scaling3D(vec3& scaleVector)
{ return mat4(vec4(scaleVector[VX], 0.0, 0.0, 0.0),
vec4(0.0, scaleVector[VY], 0.0, 0.0),
vec4(0.0, 0.0, scaleVector[VZ], 0.0),
vec4(0.0, 0.0, 0.0, 1.0)); }
mat4 perspective3D(const float d)
{ return mat4(vec4(1.0, 0.0, 0.0, 0.0),
vec4(0.0, 1.0, 0.0, 0.0),
vec4(0.0, 0.0, 1.0, 0.0),
vec4(0.0, 0.0, 1.0/d, 0.0)); }