153 lines
4.3 KiB
Text
153 lines
4.3 KiB
Text
|
|
||
|
//#define WANT_STREAM
|
||
|
|
||
|
#include "include.h"
|
||
|
|
||
|
#include "newmat.h"
|
||
|
|
||
|
#include "tmt.h"
|
||
|
|
||
|
#ifdef use_namespace
|
||
|
using namespace NEWMAT;
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/**************************** test program ******************************/
|
||
|
|
||
|
// make sure matrices work as members of a class
|
||
|
|
||
|
class TestClass
|
||
|
{
|
||
|
Matrix A;
|
||
|
Matrix B;
|
||
|
public:
|
||
|
TestClass();
|
||
|
ReturnMatrix Sum();
|
||
|
};
|
||
|
|
||
|
TestClass::TestClass() : A(2,3)
|
||
|
{
|
||
|
B.ReSize(2,3);
|
||
|
A << 1 << 4
|
||
|
<< 4 << 1
|
||
|
<< 2 << 9;
|
||
|
B << 8 << 5
|
||
|
<< 5 << 8
|
||
|
<< 7 << 0;
|
||
|
}
|
||
|
|
||
|
ReturnMatrix TestClass::Sum() { return Matrix(A + B).ForReturn(); }
|
||
|
|
||
|
|
||
|
|
||
|
void trymatb()
|
||
|
{
|
||
|
// cout << "\nEleventh test of Matrix package\n";
|
||
|
Tracer et("Eleventh test of Matrix package");
|
||
|
Tracer::PrintTrace();
|
||
|
int i; int j;
|
||
|
RowVector RV; RV.ReSize(10);
|
||
|
{
|
||
|
Tracer et1("Stage 1");
|
||
|
for (i=1;i<=10;i++) RV(i)=i*i-3;
|
||
|
Matrix X(1,1); X(1,1) = .25;
|
||
|
Print(RowVector(X.i() * RV - RV / .25));
|
||
|
// Print(RowVector(X.i() * Matrix(RV) - RV / .25)); // != zortech, AT&T
|
||
|
Print(RowVector(X.i() * RV - RV / .25));
|
||
|
}
|
||
|
LowerTriangularMatrix L(5); UpperTriangularMatrix U(5);
|
||
|
for (i=1; i<=5; i++) for (j=1; j<=i; j++)
|
||
|
{ L(i,j) = i*i + j -2.0; U(j,i) = i*i*j+3; }
|
||
|
DiagonalMatrix D(5);
|
||
|
for (i=1; i<=5; i++) D(i,i) = i*i + i + 2;
|
||
|
Matrix M1 = -L; Matrix M2 = L-U; Matrix M3 = U*3; Matrix M4 = U-L;
|
||
|
Matrix M5 = M1 - D; M1 = D * (-3) - M3;
|
||
|
{
|
||
|
Tracer et1("Stage 2");
|
||
|
Print(Matrix((M2-M4*2)+M5*3-M1));
|
||
|
M1 = L.t(); Print(Matrix(M1.t()-L));
|
||
|
M1 = U.t(); Print(Matrix(M1.t()-U));
|
||
|
}
|
||
|
{
|
||
|
Tracer et1("Stage 3");
|
||
|
SymmetricMatrix S(5);
|
||
|
for (i=1; i<=5; i++) for (j=1; j<=i; j++) S(i,j) = i*j+i-j+5;
|
||
|
M2 = S.i() * M4; M1 = S; M3=M1*M2-M4; Clean(M3,0.00000001); Print(M3);
|
||
|
SymmetricMatrix T(5);
|
||
|
for (i=1; i<=5; i++) for (j=1; j<=i; j++) T(i,j) = i*i*j*j+i-j+5-i*j;
|
||
|
M1 = S.i() * T; M1 = S * M1; M1 = M1-T; Clean(M1,0.00000001); Print(M1);
|
||
|
ColumnVector CV(5); for (i=1; i<=5; i++) CV(i) = i*i*i+10;
|
||
|
M1 = CV * RV;
|
||
|
}
|
||
|
{
|
||
|
Tracer et1("Stage 4");
|
||
|
M4.ReSize(5,10);
|
||
|
for (i=1; i<=5; i++) for (j=1; j<=10; j++) M4(i,j) = (i*i*i+10)*(j*j-3);
|
||
|
Print(Matrix(M1-M4));
|
||
|
M1 = L.t(); M2 = U.t(); M3 = L+U; Print(Matrix(M1-M3.t()+M2));
|
||
|
}
|
||
|
// UpperTriangularMatrix U2((const UpperTriangularMatrix&)U); // != zortech
|
||
|
UpperTriangularMatrix U2((UpperTriangularMatrix&)U);
|
||
|
{
|
||
|
Tracer et1("Stage 5");
|
||
|
Print(Matrix(U2-U));
|
||
|
M2.ReSize(10,10);
|
||
|
for (i=1; i<=10; i++) for (j=1; j<=10; j++) M2(i,j) = (i*i*i+10)*(j*j-3);
|
||
|
D << M2; L << M2; U << M2; // check copy into
|
||
|
Print( Matrix( (D+M2)-(L+U) ) );
|
||
|
}
|
||
|
{
|
||
|
Tracer et1("Stage 6");
|
||
|
M1.ReSize(6,10);
|
||
|
for (i=1; i<=6; i++) for (j=1; j<=10; j++) M1(i,j) = 100*i + j;
|
||
|
M2 = M1.SubMatrix(3,5,4,7); M3.ReSize(3,4);
|
||
|
for (i=3; i<=5; i++) for (j=4; j<=7; j++) M3(i-2,j-3) = 100*i + j;
|
||
|
Print(Matrix(M2-M3));
|
||
|
}
|
||
|
int a1,a2,a3,a4;
|
||
|
{
|
||
|
Tracer et1("Stage 7");
|
||
|
int a1,a2,a3,a4;
|
||
|
a1=4; a2=9; a3=4; a4=7;
|
||
|
U.ReSize(10);
|
||
|
for (i=1; i<=10; i++) for (j=i; j<=10; j++) U(i,j) = 100*i + j;
|
||
|
M2 = U.SubMatrix(a1,a2,a3,a4);
|
||
|
M3.ReSize(a2-a1+1,a4-a3+1); M3=0.0;
|
||
|
for (i=a1; i<=a2; i++) for (j=(i>a3) ? i : a3; j<=a4; j++)
|
||
|
M3(i-a1+1,j-a3+1) = 100*i + j;
|
||
|
Print(Matrix(M2-M3));
|
||
|
}
|
||
|
{
|
||
|
Tracer et1("Stage 8");
|
||
|
a1=3; a2=9; a3=2; a4=7;
|
||
|
U.ReSize(10);
|
||
|
for (i=1; i<=10; i++) for (j=i; j<=10; j++) U(i,j) = 100*i + j;
|
||
|
M2 = U.SubMatrix(a1,a2,a3,a4);
|
||
|
M3.ReSize(a2-a1+1,a4-a3+1); M3=0.0;
|
||
|
for (i=a1; i<=a2; i++) for (j=(i>a3) ? i : a3; j<=a4; j++)
|
||
|
M3(i-a1+1,j-a3+1) = 100*i + j;
|
||
|
Print(Matrix(M2-M3));
|
||
|
}
|
||
|
{
|
||
|
Tracer et1("Stage 9");
|
||
|
a1=4; a2=6; a3=2; a4=5;
|
||
|
U.ReSize(10);
|
||
|
for (i=1; i<=10; i++) for (j=i; j<=10; j++) U(i,j) = 100*i + j;
|
||
|
M2 = U.SubMatrix(a1,a2,a3,a4);
|
||
|
M3.ReSize(a2-a1+1,a4-a3+1); M3=0.0;
|
||
|
for (i=a1; i<=a2; i++) for (j=(i>a3) ? i : a3; j<=a4; j++)
|
||
|
M3(i-a1+1,j-a3+1) = 100*i + j;
|
||
|
Print(Matrix(M2-M3));
|
||
|
}
|
||
|
|
||
|
{
|
||
|
Tracer et1("Stage 10");
|
||
|
TestClass TC;
|
||
|
Matrix M = TC.Sum() - 9;
|
||
|
Print(M);
|
||
|
}
|
||
|
|
||
|
|
||
|
// cout << "\nEnd of eleventh test\n";
|
||
|
}
|