
Computer Vision and Image Understanding 114 (2010) 963–980
Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate/cviu
Study of parameterizations for the rigid body transformations of the scan
registration problem

Andreas Nüchter a,*, Jan Elseberg a, Peter Schneider b, Dietrich Paulus b

a Jacobs University Bremen, School of Engineering and Science Campus Ring 1, 28759 Bremen, Germany
b University of Koblenz-Landau, Institute for Computational Visualistics, Active Vision Group, Universitätsstr. 1, 56070 Koblenz, Germany

a r t i c l e i n f o
Article history:
Received 17 October 2009
Accepted 24 March 2010
Available online 31 March 2010

Keywords:
3D scan matching
3D point cloud registration
ICP algorithm
1077-3142/$ - see front matter � 2010 Elsevier Inc. A
doi:10.1016/j.cviu.2010.03.007

* Corresponding author.
E-mail address: andreas@nuechti.de (A. Nüchter).
a b s t r a c t

The iterative closest point (ICP) algorithm is the de facto standard for geometric alignment of three-
dimensional models when an initial relative pose estimate is available. The basis of the algorithm is
the minimization of an error function that takes point correspondences into account. Four closed-form
solution methods are known for minimizing this function. This paper presents novel linear solutions to
the scan registration problem, i.e., to the problem of putting and aligning 3D scans in a common coordi-
nate system. We extend the methods for registering n-scans in a global and simultaneous fashion, such
that the registration of the nth scan influences all previous registrations in one step.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Registering 3D models, i.e., putting two or more 3D scans in a
common coordinate system, is a crucial step in 3D model construc-
tion. Many applications use the iterative closest point (ICP) algo-
rithm. Nowadays precise 3D scanners are available that are used
in architecture, industrial automation, agriculture, cultural heri-
tage conservation, and facility management. Other applications of
point cloud registration algorithms include medical data process-
ing, art history, archaeology, and rescue and inspection robotics.
The recent advent of time-of-flight (TOF) 3D cameras is likely to
generate another burst of ICP-like applications in the near future
[55,51,54].

The ICP algorithm registers two independently acquired 3D
scans or 3D point clouds into a common coordinate system. Here
the algorithm relies on minimizing an error function over closest
point correspondences. The following analogy is often used to de-
pict the minimization issue: the correspondences represent a sys-
tem of springs that forces the scan to be aligned to the correct
position. Four closed-form solution methods are known for mini-
mizing the ICP error function [28]. The difficulty in minimizing
the ICP error function is to ensure the orthonormality constraint
of the included rotation matrix. This paper presents linearized
solution methods, where the optimal rotation is approximated by
solving a system of linear equations. The linearization methods
are the helix transform, the small angle approximation, and the
uncertainty-based registrations. For the latter one we model the
ll rights reserved.
scan pose, i.e., position and orientation, as Gaussian distributions
and use the Euler and the quaternion representation. Our objective
is to compare different gradient descent algorithms based upon
different rotation parameterizations to solve the bundle adjust-
ment problem that arises with 3D point clouds produced by range
finders. In [46] the recommendation concerning the parameteriza-
tion choice is stated as:

‘‘Similarly, experience suggests that quasi-global 3 parameter rota-
tion parameterizations such as Euler angles cause numerical prob-
lems unless one can be certain to avoid their singularities and
regions of uneven coverage. Rotations should be parameterized
using either quaternions subject to j _qj2 ¼ 1, or local perturbations
RdR or dRR of an existing rotation R, where dR can be any
well-behaved 3 parameter small rotation approximation, e.g.,
dR = (I3�3 + [dr]�), the Rodriguez formula, local Euler angles, etc.”.

Recently, Grisetti et al. [21] used a gradient descent technique
for 3D robotic mapping incorporating incremental spherical linear
interpolation [2]. Also Mitra et al. [31] and Hertzberg [22] make
use of some gradient descent method for registration. This paper
focuses on the issue of linearization of the rotation manifold and
studies alternative methods.

If n-scans have to be registered, any sequential application of
ICP will accumulate errors, and therefore the ICP algorithm has to
be extended. Fig. 1 presents an urban scene digitalized with
roughly 1000 3D scans. The accompanying video demonstrates
the ICP scan matching and the loop closing, when the robot that
acquires the 3D scans returns to a location where it has been
before. Every frame corresponds to an ICP scan matching (we
skip the animation of the actual ICP scan matching), or to one

http://dx.doi.org/10.1016/j.cviu.2010.03.007
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Fig. 1. Registration of n-scans. Top: scene HANNOVER2 of an urban environment in a
bird’s eye view. The scans have been taken according to the trajectory: A-B-C-D-A-
B-E-F-A-D-G-H-I-J-H-K-F-E-L-I-K-A. A video of the scan matching process can be
found under http://www.plum.eecs.jacobs-university.de/submissions/large_slam.
mpg. Bottom: 3D view of the scene viewed from the left side.
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step of the global scan matching (red frames). Locally consistent
registration algorithms retain the analogy of the spring system
[12] and the resulting algorithms need many iterations for mini-
mizing the global error function. However, globally consistent
algorithms minimize the error function in one step. Therefore,
it is more likely to reach the global and hopefully the correct
optimum. Fig. 2 shows the accumulated error when performing
sequential ICP scan matching and the result of globally consistent
scan matching. Fig. 3 stresses the difference between global and
local optimal results and gives a schematic illustration of the
difference.

This paper presents linear solutions to the global n-scan regis-
tration problem. The two-scan cases are extended to n-scans, thus
a system of linear equations is built and finally solved to yield new
scan poses. The presented methods are examined with respect to
computational requirements and to approximation and implemen-
tation issues.

The paper is structured as follows: next we summarize the state
of the art for 3D registration of laser scans. Since this technique is
often used in robotics for mapping, we will also briefly discuss
current developments in this field. Then we present the two-scan
registration methods. Section 4 presents the solutions to the n-scan
registration problem followed by a detailed analysis. Finally,
Section 6 presents the experiments and results. Inspired by these
evaluations we develop an additional solution to the n-scan
registration problem in Section 7, which turns out to subsume an
already given solution. Finally, Section 8 concludes.
2. State of the art

2.1. The ICP algorithm

The following method is the de facto standard for registration of
point sets. The complete algorithm was invented at the same time
in 1991 by Besl and McKay [5], by Chen and Medioni [10] and by
Zhang [50]. The method is called the iterative closest point (ICP)
algorithm.

Given two independently acquired sets of 3D points, bM (model
set) and bD (data set) which correspond to a single shape, we want
to find the transformation (R,t) consisting of a rotation matrix R
and a translation vector t which minimizes the following cost
function:

EðR; tÞ ¼ 1
N

XN

i¼1

kmi � ðRdi þ tÞk2
; ð1Þ

All corresponding points can be represented in a tuple (mi,di),
where mi 2 M � bM and di 2 D � bD. Two things have to be calcu-
lated: first, the corresponding points, and second, the transforma-
tion (R,t) that minimizes E(R,t) on the basis of the corresponding
points. The ICP algorithm uses closest points as corresponding
points. A sufficiently good starting guess enables the ICP algorithm
to converge to the correct minimum.

Current research in the context of ICP algorithms mainly fo-
cuses on fast variants of ICP algorithms [39]. If the input are 3D
meshes then a point-to-plane metric can be used instead of Eq.
(1). Minimizing using a point-to-plane metric outperforms the
standard point-to-point one, but requires the computation of nor-
mals and meshes in a pre-processing step.

The computation of closest points is the most expensive step in
the ICP algorithm. Using the optimized k-d trees the cost for finding
the closest point to a given query point is at average in the order of
O(logN) [19], thus the overall cost is O(NlogN) (expected time).
Note: N can be very large; advanced high-precise 3D laser scanners
such as the Zoller + Fröhlich yield a data rate up to 500,000
3D points per second [53]. Improvements to k-d tree search have
been presented. They include approximate k-d tree search [20],
registration using d2-trees [31] and cached k-d tree search [32].

2.2. Marker and feature-based registration

To avoid issues with starting guess in the ICP framework, mar-
ker based registration uses defined artificial or natural landmarks
as corresponding points. This manual data association ensures that
by minimizing Eq. (1) the scans are registered at the correct loca-
tion. Iterations are no longer required. Feature based algorithms,
like using SIFT features, automatically extract the 3D position of
natural features and do not need any iterations nor manual inter-
ference for registration [7].

While registering several 3D data sets using the ICP algorithm
or marker and feature-based registration techniques, errors sum
up. These errors are due to imprecise measurements and small
registration errors. Therefore, globally consistent scan matching
algorithm aim at reducing these errors.

2.3. Globally consistent scan matching

Chen and Medioni [11] aimed at globally consistent range
image alignment when introducing an incremental matching
method, i.e., all new scans are registered against the so-called
metascan, which is the union of the previously acquired and
registered scans. This method does not spread out the error and
is order-dependent.

Bergevin et al. [4], Stoddart and Hilton [41], Benjemaa and
Schmitt [2,3], and Pulli [38] present iterative approaches. Based
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Fig. 2. Top left: 3D view of the scene with the accumulated error during the sequence A-B-C-D-A, where we recorded 135 3D scans. Top right: Scene in a bird’s eye view.
Bottom row: Consistent registration results. Left: Globally consistent registration in 3D view. Right: Bird’s eye view.

1 2

Fig. 3. Left: Locally consistent algorithms reduce the registration errors at the loop closing point but fail to distribute the error. Here in comparison with the global optimal
result in bird’s eye view (cf. Fig. 2). Right: Schematic view of the registration of 6 scans, whose points are represented by different gray values. Algorithms working locally
optimal move every scan separately, while global optimal algorithms minimize all distances at the same time. This includes especially, that the transformation of scan 1 is
continued to scan 2 (the rightmost one), i.e., incorporating a ‘‘leverage effect”.
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on networks representing overlapping parts of images, they use the
ICP algorithm for computing transformations that are applied after
all correspondences between all views have been found. However,
the focus of research is mainly 3D modeling of small objects using
a stationary 3D scanner and a turn table; therefore, the used net-
works consist mainly of one loop [38], where the loop closing
has to be smoothed. These solutions are locally consistent algo-
rithms that stick to the mentioned analogy of the spring system
[12] whereas true globally consistent algorithms minimize the er-
ror function in one step.

A probabilistic approach was proposed by Williams et al. [48],
where each scan point is assigned a Gaussian distribution in order
to model the statistical errors made by laser scanners. This causes
high computation time due to the large amount of data in practice.
Krishnan et al. [27] presented a global registration algorithm that
minimizes the global error function by optimization on the mani-
fold of 3D rotation matrices.

2.4. Current trends

Recently, alternatives to ICP has been presented. Registration
without ICP was described by Pottmann et al. [37] by relying on
the geometry of the squared distance function of a scanned surface.
In addition, the normal distribution transform (NDT) was proposed
as an alternative to the ICP algorithm [6,30]. The NDT divides the
3D space into boxes and correlates all boxes of two scans, yielding
more reliable scan matching with respect to the starting guess
compared to the ICP algorithm at the expense of computational
costs. An extension to the NDT algorithm to globally consistent
scan matching is still missing.
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2.5. Robotic 3D mapping

Simultaneous Localization and Mapping (SLAM) is the problem
of building a map of an unknown environment with a mobile robot
while at the same time navigating in the environment, using the
unfinished map. The map building problem is a fundamental prob-
lem in robotics, since the presence of an accurate map is needed in
many applications. The development of solutions to the localiza-
tion problem as well as the SLAM problem exploit probabilistic
methods[42], resulting in a de facto standard, i.e., probabilistic
robotics [44]. States of the robot and its environment are repre-
sented by probability distributions and the application of Bayes
rule allows to integrate sensor measurements. Depending on the
representation of the probability distributions we see Kalman fil-
ters (Gaussians) [15], grid based approaches (non-Gaussians)[43],
and particle filters (sample based non-Gaussians) [45]. The latter
two approaches keep for one state several hypothesis at the time.
Thus, they are computationally more expensive, but add reliability
to the robotic system.

Progress in sensing technology and the need to handle more de-
gree of freedom, resulted in a step backwards and one-hypothesis
systems are again set-up. However, probabilistic representations
are still preferred, e.g., in [16,14,33,21].

3. 2-Scan registration

Four algorithms are currently known that solve the error function
of the ICP algorithm in closed form [28]. These algorithms are briefly
discussed next, followed by the description of our linear solutions.

3.1. Closed-form solutions

Four algorithms are currently known that solve the error func-
tion of the ICP algorithm in closed form [28]. The difficulty of this
minimization is to enforce the orthonormality constraint for the
rotation matrix R. Three of these algorithms separate the computa-
tion of the rotation R from the computation of the translation t.
These algorithms compute the rotation first and afterward the
translation is derived using the rotation. For this separation, two
point sets M0 and D0 have to be computed, by subtracting the mean
of the points that are used in the matching:

cm ¼
1
N

XN

i¼1

mi; cd ¼
1
N

XN

i¼1

di ð2Þ

and

M0 ¼ fm0
i ¼mi � cmg1;...;N; D0 ¼ fd0i ¼ di � cdg1;...;N: ð3Þ

After replacing Eq. (2) and (3) in the error function, E(R,t) Eq. (1)
becomes:

EðR; tÞ ¼ 1
N

XN

i¼1

km0
i � Rd0i � ðt� cm þ RcdÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}¼~tk

2

¼ 1
N

XN

i¼1

km0
i � Rd0ik

2 � 2
N

~t �
XN

i¼1

m0
i � Rd0i

� �
þ 1

N

XN

i¼1

k~tk2
:

ð4Þ

In order to minimize the sum above, all terms have to be min-
imized. The second sum is zero, since all values refer to centroid.
The third part has its minimum for ~t ¼ 0 or

t ¼ cm � Rcd:

Therefore the algorithm has to minimize only the first term, and
the error function is expressed in terms of the rotation only:
EðR; tÞ /
XN

i¼1

km0
i � Rd0ik

2
: ð5Þ
(1) The first method was developed 1987 by Arun, Huang and
Blostein [1]. The rotation R is represented as an orthonormal
3 � 3 matrix. The optimal rotation is calculated by R = VUT.
Here the matrices V and U are derived by the singular value
decomposition H = UKVT of a cross-correlation matrix H.
This 3 � 3 matrix H is given by0 1

H ¼

XN

i¼1

m0T
i d0i ¼

Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

B@ CA; ð6Þ

where Sxx ¼
PN

i¼1 m0x;id
0
x;i; Sxy ¼

PN
i¼1 m0x;id

0
y;i; . . ..
(2) The second method is similar to the previous method and
was independently developed in 1988 by Horn, Hilden and
Negahdaripour [26]. Again, a correlation Matrix H according
to Eq. (6) is calculated. Afterward a so-called polar decompo-
sition is computed, i.e., H = PS, where S = (HTH)1/2. For this
polar decomposition Horn et al. define a square root of a
matrix [26]. Let H, S and P the matrices as described above.
Then the optimal rotation is given by
R ¼ P ¼ H
1ffiffiffiffiffi
k1
p u1uT

1 þ
1ffiffiffiffiffi
k2
p u2uT

2 þ
1ffiffiffiffiffi
k3
p u3uT

3

� �
;

where {ki} are the eigenvalues and {ui} the corresponding
eigenvectors of the matrix HTH [26].
(3) The third method finds the transformation for the ICP algo-
rithm by using unit quaternions. This method was invented
in 1987 by Horn [25]. The rotation represented as unit qua-
ternion _q, that minimizes (1), corresponds to the largest
eigenvalue of the cross-covariance matrix N
ðSxxþ Syyþ SzzÞ ðSyz þ SzyÞ ðSzxþ SxzÞ ðSxy þ SyxÞ
ðSyzþ SzyÞ ðSxx� Syy� SzzÞ ðSxyþ SyxÞ ðSzxþ SxzÞ
ðSzxþ SxzÞ ðSxy þ SyxÞ ð�Sxxþ Syy� SzzÞ ðSyzþ SzyÞ
ðSxyþ SyxÞ ðSyz þ SzyÞ ðSzxþ SxzÞ ð�Sxx� Syyþ SzzÞ

0BBB@
1CCCA:
(4) The fourth solution method for minimizing Eq. (1) uses
so-called dual quaternions. This method was developed by
Walker, Shao and Volz in 1991 [47]. Unlike the first three
methods covered so far the transformation is found in a sin-
gle step. There is no need to apply the trick with centroids to
compute the rotation in a separate fashion. Here, the optimal
transformation consisting of a rotation and translation is
again a solution of the eigenvalue problem of a 4 � 4 matrix
function that is built from corresponding point pairs.

3.2. Linearized solutions

The closed-form solutions discussed so far are all non-linear,
since they need an eigenvector/eigenvalue solver, e.g., in case of
using the third method, a quartic equation must be solved [25].
Next, we present four linear solutions for minimizing the ICP error
function Eq. (1). The advantage of these linear solutions is that they
can be extended straightforward to n-scan registrations.

3.2.1. Registration using the helix transform
Under the assumption that the transformation (R,t) that has to

be calculated by the ICP algorithm is small, we can approximate
the solution by applying instantaneous kinematics. This solution
was initially given by Hofer and Pottmann [24,36] and is repeated
here, to make the paper self-contained and to enable us to extend
the solution in [24] to the global optimal case.

Instantaneous kinematics computes the displacement of a 3D
point by an affine transformation via a so-called helical motion
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[36]. A 3D point p is mapped by adding a small displacement v(p)
given by the parameters �x and x, i.e.,

vðpÞ ¼ �xþ x� p:

To minimize the ICP error function Eq. (1) the displacement of
the points in D has to minimize the distances between the point
pairs. Thus Eq. (1) is rewritten as follows:

Eð�x;xÞ ¼
XN

i¼1

kmi � ðdi þ vðdiÞÞk2

¼
XN

i¼1

kmi � ðdi þ �xþ x� diÞk2 ð7Þ

Since Eq. (7) is a quadratic function with the two unknown vari-
ables �x; x, the optimal displacement to Eq. (7) is given by the solu-
tion of the following linear system: �xþ x� di ¼ Di � u, where
u ¼ ðxT ; �xTÞT and

Di ¼
0 dz;i �dy;i 1 0 0
�dz;i 0 dx;i 0 1 0
dy;i �dx;i 0 0 0 1

0@ 1A
XN

i¼1

DT
i Diu ¼

XN

i¼1

DT
i ðmi � diÞ ð8Þ

The optimal displacement calculated by Eq. (8) corresponds to
an affine motion. Fig. 4 presents the displacement of a point using
the affine transformation and rigid transformation. Therefore in a
post processing step a rigid transformation (R,t) is calculated from
ð�x;xÞ as follows: if x = 0 only a translation is present. In this case
t ¼ �x holds. Otherwise an axis G consisting of a direction vector g
and a momentum vector �g can be computed. The tuple ðg; �gÞ are
the Plücker coordinates of the axis G:

g ¼ x
kxk ;

�g ¼ x� px
kxk ; p ¼ xT � �x

x2

Based on G the point di has to be transformed as follows:

d0i ¼ Rðdi � rÞ þ ðp /Þgþ r ð9Þ

Here R is the rotation matrix

R ¼ 1

b2
0 þ b2

1 þ b2
2 þ b2

3

b2
0 þ b2

1 � b2
2 � b2

3 2ðb1b2 þ b0b3Þ 2ðb1b3 � b0b2Þ
2ðb1b2 � b0b3Þ b2

0 � b2
1 þ b2

2 � b2
3 2ðb2b3 þ b0b1Þ

2ðb1b3 þ b0b2Þ 2ðb2b3 � b0b1Þ b2
0 � b2

1 � b2
2 þ b2

3

0B@
1CA;
ð10Þ

where b0 = cos(//2), b1 = gx sin(//2), b2 = gy sin(//2), and b3 = gz

sin(//2). g = (gx,gy,gz) is the above mentioned direction vector of
the axis G. Furthermore in Eq. (9) r is an arbitrary point on the axis
G. Note: Eq. (10) is similar to the term for computing a rotation ma-
trix from a unit quaternion. Please refer to [24] for more details.
Fig. 4. The affine position of a 3D point pi + v(pi) is different from the rigid
transformation that results in point p0i . Based on [24].
3.2.2. Small angle approximation
Next, we develop a novel method based on the small angle

approximation. Its basis is again the assumption that the transfor-
mation (R,t) to be calculated by the ICP algorithm is small. Given a
rotation matrix R based on the Euler angles

coshy coshz �coshy sinhz sinhy

coshz sinhx sinhy þ coshx sinhz coshx coshz � sinhx sinhy sinhz �coshy sinhx

sinhx sinhz � coshx coshz sinhy coshz sinhx þ coshx sinhy sinhz coshx coshy

0B@
1CA
ð11Þ

we use the first-order Taylor series approximation that is valid for
small angles

sin h � h� h3

3
þ h5

5
� � � �

cos h � 1� h2

2
þ h4

4
� � � �

and apply it to (11). The resulting approximative rotation is

R �
1 �hz hy

hxhy þ hz 1� hxhyhz �hx

hxhz � hy hx þ hyhz 1

0B@
1CA: ð12Þ

As a second approximation we assume that the result of a mul-
tiplication of small angles yields even smaller values that can be
omitted as well. This eliminates second-order and higher combina-
tion terms and Eq. (12) becomes:

R �
1 �hz hy

hz 1 �hx

�hy hx 1

0B@
1CA ¼ I3�3 þ

0 �hz hy

hz 0 �hx

�hy hx 0

0B@
1CA: ð13Þ

We notice that this term is closely related to the Rodrigues for-
mula but is no longer orthonormal.

Replacing this approximation (13) in the ICP error function Eq.
(1) and rearranging the unknown variables in a vector yields:

mi � ðRdi þ tÞ �mi �
1 �hz hy

hz 1 �hx

�hy hx 1

0B@
1CAdi � t

¼mi � di �
0 dz;i �dy;i 1 0 0

�dz;i 0 dx;i 0 1 0

dy;i �dx;i 0 0 0 1

0B@
1CA

hz

hy

hx

tx

ty

tz

0BBBBBBBBB@

1CCCCCCCCCA
:

ð14Þ

Surprisingly, the resulting equation is equal to the notation of Eq.
(7) by Hofer and Pottmann [24,36]. The top part of the solution vec-
tor was called c while the bottom part resembles �c. Therefore, the
result has to be interpreted as a so-called helical motion and not
using the small angle assumption. The small angle approximation
fails, since the rotation calculated by the ICP algorithm always refers
to the global coordinate system, i.e., represents a rotation about the
origin (0,0,0). While the helical motion takes care of this by calcu-
lating a rotation axis, our approximation does not regard this.

In order to make the small angle approximation of the rotation
matrix Eq. (13) work, we have to apply the clever centroid trick, al-
ready used to derive Eq. (5). This separates the rotation from the
translation. The resulting term is

m0
i � Rd0i �m0

i � d0i �
0 d0z;i �d0y;i
�d0z;i 0 d0x;i
d0y;i �d0x;i 0

0BB@
1CCA

hz

hy

hx

0B@
1CA
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Suppose the vector u to be u = (hz,hy,hx). Then the optimal dis-
placement for the ICP error function composed using the approxi-
mation in Eq. (14) is given by the solution to the following linear
equation system:

Di ¼
0 d0z;i �d0y;i
�d0z;i 0 d0x;i
d0y;i �d0x;i 0

0BB@
1CCA

XN

i¼1

DT
i Diu ¼

XN

i¼1

DT
i ðm0

i � d0iÞ

After the approximation of the rotation is found, the optimal
translation is calculated in Eq. (4).

3.2.3. Uncertainty-based registration
For some applications it is necessary to have a notion of the

uncertainty of the poses calculated by the registration algorithm.
The following is the extension of the probabilistic approach first
proposed in [29] to 6 DoF. This extension is not straightforward,
since the matrix decomposition, i.e., Eq. (16) cannot be derived
from first principles. For a more detailed description of the exten-
sion refer to [8,9]. In addition to the pose X, the pose estimate �X
and the pose error DX are required.

The positional error of a scan at its pose X is described by:

E ¼
Xm

i¼1

kX� di �mik2 ¼
Xm

i¼1

kZiðXÞk2

Here,� is the compounding operation that transforms a point di

into the global coordinate system. For small pose errors DX, E can
be linearized by use of a Taylor expansion:

ZiðXÞ � X� di �mi �rZiðXÞDX ¼ ZiðXÞ � rZiðXÞDX

Utilizing the matrix decomposition MiH of rZiðXÞ that sepa-
rates the pose X, which is contained in H from the points mi and
di, which are contained in Mi:

ZiðXÞ � ZiðXÞ �MiHDX

Appropriate decompositions are given for the Euler angles, qua-
ternion representation and the Helix transform in the following
paragraphs. Because Mi is independent of the pose, the positional
error E is approximated as:

E � ðZ�MHDXÞTðZ�MHDXÞ;

where Z is the concatenation of all ZiðXÞ and M the concatenation of
all Mi’s.

E is minimized by the ideal pose:

E ¼ ðMT MÞ�1MT Z

and its covariance is given by

C ¼ s2ðMT MÞ;

where s2 is the unbiased estimate of the covariance of the identi-
cally, independently distributed errors of Zi:

s2 ¼ ðZ�MEÞTðZ�MEÞ=ð2m� 3Þ: ð15Þ

Note that E is the minimum for the linearized pose HDX.
To obtain the optimal X the following transformation is
performed:

X ¼ X�H�1E;

C ¼ ðH�1ÞCðH�1ÞT :
3.2.3.1. Euler angles. The representation of pose X in Euler angles,
as well as its estimate and error is as follows:

X ¼

tx

ty

tz

hx

hy

hz

0BBBBBBBB@

1CCCCCCCCA
;X ¼

�tx

�ty

�tz

�hx

�hy

�hz

0BBBBBBBB@

1CCCCCCCCA
;DX ¼

Dtx

Dty

Dtz

Dhx

Dhy

Dhz

0BBBBBBBB@

1CCCCCCCCA
The matrix decomposition MiH ¼ rZiðXÞ, i.e., the Jacobian, is

given by:

H¼

1 0 0 0 �tz cosð�hxÞþ�ty sinð�hxÞ �ty cosð�hxÞcosð�hyÞ��tz cosð�hyÞsinð�hxÞ

0 1 0 ��tz ��tx sinð�hxÞ ��tx cosð�hxÞcosð�hyÞ��tz sinð�hyÞ

0 0 1 �ty ��tx cosð�hxÞ �tx cosð�hyÞsinð�hxÞþ�ty sinð�hyÞ

0 0 0 1 0 sinð�hyÞ

0 0 0 0 sinð�hxÞ cosð�hxÞcosð�hyÞ

0 0 0 0 cosð�hxÞ �cosð�hyÞsinð�hxÞ

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
ð16Þ

and

Mi ¼
1 0 0 0 �dy;i �dz;i

0 1 0 dz;i dx;i 0
0 0 1 �dy;i 0 dx;i

0B@
1CA:

As required, Mi contains all point information while H expresses
the pose information. Thus, this matrix decomposition constitutes
a pose linearization similar to those proposed in the preceding sec-
tions. Note that, while the matrix decomposition is arbitrary with
respect to the column and row ordering of H, this particular
description was chosen due to its similarity to the 3D pose solution
given in [29].

3.2.3.2. Quaternions. The representation of the pose X as quater-
nions, as well as its estimate and error are given as follows:

X ¼

tx

ty

tz

p

q

r

s

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
;X ¼

�tx

�ty

�tz

�p

�q

�r

�s

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
;DX ¼

Dtx

Dty

Dtz

Dp

Dq

Dr

Ds

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
The matrix decomposition MiH ¼ rZiðXÞ for quaternions is gi-

ven by:

Mi ¼
1 0 0 dx;i 0 �dz;i dy;i

0 1 0 dy;i dz;i 0 �dx;i

0 0 1 dz;i �dy;i dx;i 0

0B@
1CA

H ¼
I3�3 �2 � T

0 2 � U

� �

TT ¼

�p�tx þ �s�ty � �r�tz ��s�tx þ �p�ty þ �q�tz �r�tx � �q�ty þ �p�tz

�q�tx þ �r�ty þ �s�tz ��r�tx þ �q�ty � �p�tz ��s�tx þ �p�ty þ �q�tz

�r�tx � �q�ty þ �p�tz �q�tx þ �r�ty þ �s�tz ��p�tx � �s�ty þ �r�tz

�s�tx � �p�ty � �q�tz �p�tx þ �s�ty � �r�tz �q�tx þ �r�ty � �s�tz

0BBBB@
1CCCCA

U ¼

�p �q �r �s
�q ��p �s ��r
�r ��s ��p �q
�s �r ��q ��p

0BBB@
1CCCA
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Again, all point information is restricted to Mi and all pose infor-
mation to H, so that the matrices describe a linearization of the
quaternion transformation. Since this specific linearization was
derived without regarding the normalized nature of the unit
quaternions, this approach may yield non-unit quaternions. As
non-unit quaternions do not constitute valid poses, the resulting
quaternion must additionally be normalized before use.

4. n-Scan registration

The n-scan registration using linearization allows us to compute
global optimal poses in one step given point correspondences be-
tween adjacent scans. These scans are given by a graph, where each
link, j ? k denotes a set of point pairs, i.e., closest points. Following
the notation of ICP, scan j serves as the model set, while scan k
serves as data set. Next we present four novel linear methods for
the parameterization of the rotation.

4.1. Global registration using the helix transform

We minimize the error function for global consistent scan
matching, i.e., we improve the approach given in [36] which is only
locally consistent to include off-diagonal elements in the resulting
system of equations [23]. The error function is extended to include
all poses Xj ¼ ðxT

j ; �xT
j Þ

T :

E ¼
X
j!k

X
i

ðmi � di þ ð�xj þ xj �miÞ � ð�xk þ xk �miÞÞ2

¼
X
j!k

X
i

ðð�xj þ xj �miÞ � ð�xk þ xk �miÞÞ2 þ
X

i

2ððmi � diÞ
 

� �xj þ xj �miÞ þ ðdi �miÞ � ð�xk þ xk �miÞÞ þ
X

i

ðmi � diÞ2
 !

ð17Þ

Reformulating E as

E ¼ XT � B � Xþ 2A � Xþ
X

i

ðmi � diÞ2;

allows us to solve for the optimal poses X in the linear equation
system:

BX ¼ A

A is attained as follows:

2AX ¼
X
j!k

X
i

2ððmi � diÞð�xj þ xj �miÞ þ ðdi �miÞð�xk þ xk �miÞÞ

Aj ¼
X
j!k

X
i

mi � ðmi � diÞ
mi � di

� �
þ
X
k!j

X
i

mi � ðdi �miÞ
di �mi

� �

In other words, for each link j! k mi � ðmi � diÞ
mi � di

� �
is added to

Aj while the same amount is subtract from Ak.

B is defined by

XT � B � X ¼
X
j!k

X
i

ðð�xj þ xj �miÞ � ð�xk þ xk �miÞÞ2;

and given as

Bj;j ¼
X

j!k
k!j

X
i

Mi

Bj;k ¼
X
j!k

X
i

�Mi;
where

Mi ¼

m2
y;i þm2

z;i �mx;imy;i �mx;imz;i 0 �mz;i my;i

�mx;imy;i m2
x;i þm2

z;i �my;imz;i mz;i 0 �mx;i

�mx;imz;i �my;imz;i m2
x;i þm2

y;i �my;i mx;i 0

0 mz;i �my;i 1 0 0

�mz;i 0 mx;i 0 1 0

my;i �mx;i 0 0 0 1

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
:

4.2. Global registration using the small angle approximation

Similarly to Eq. (17), the error metric is extended to include all
poses Xj:

E ¼
X
j!k

X
i

jRjmi þ tj � ðRkdi þ tkÞj2:

Using the centroids cd and cm, where m0
i ¼mi � cm; d0i ¼ di � cd,

E is restated as:

E ¼
X
j!k

X
i

Rjm0
i þ Rjcm þ tj � ðRkd0i þ Rkcd þ tkÞ

�� ��2
¼
X
j!k

X
i

Rjm0
i � Rkd0i � ðtk � tj þ Rkcd � RjcmÞ

�� ��2
¼
X
j!k

X
i

jRjm0
i � Rkd0ij

2 � 2
X

i

ðtk � tj þ Rkcd � RjcmÞ
 

� ðRjm0
i � Rkd0iÞ þ

X
i

jtk � tj þ Rkcd � Rjcmj2
!
:

The term �2
P

iðtk � tj þ Rkcd � RjcmÞðRjm0
i � Rkd0iÞ equates to

zero, because all values refer to the centroids. This enables us to
solve for the rotation of all poses independent of their translation.

4.2.1. Computing the rotation
Minimizing the first term of the restated error metric allows us

to derive the optimal rotation of all poses. Since the rotation is a
non-linear operation we utilize the following linearization: we ap-
ply the same small angle approximation as in Eq. (14):

Rjmi ¼
0 mz;i �my;i

�mz;i 0 mx;i

my;i �mx;i 0

0B@
1CA � Xj þmi ¼Mi � Xj þmi:

The rotation is represented as Xj = (hz, j,hy, j,hx, j)T. The following
rotational error will be minimized:

ER ¼
X
j!k

X
i

Mi � Xj � Di � Xk � ðmi � diÞ
� �2

¼
X
j!k

X
i

ðMi � Xj � Di � XkÞ2 þ ðmi � diÞ2

� 2ðMi � Xj � Di � XiÞ � ðmi � diÞ:

The error term is rewritten

ER ¼ XBXþ 2AXþ ðmk � dkÞ2

in order to solve the linear equation system

BXþ A ¼ 0:
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With B given by:

Bj;j ¼
X
j!k

X
i

DT
i � Di þ

X
k!j

X
i

MT
i �Mi
case j < k:
Bj;k ¼ �
X
j!k

X
i

MT
i � Di

case j > k:

Bj;k ¼ �
X
j!k

X
i

DT
i �Mi;
and A by:

Aj ¼
X
k!j

X
i

ðmz;i � dz;iÞ � dy;i � ðmy;i � dy;iÞ � dz;i

ðmx;i � dx;iÞ � dz;i � ðmz;i � dz;iÞ � dx;i

ðmy;i � dy;iÞ � dx;i � ðmx;i � dx;iÞ � dy;i

0BB@
1CCA

�
X
j!k

X
i

ðmz;i � dz;iÞ �my;i � ðmy;i � dy;iÞ �mz;i

ðmx;i � dx;iÞ �mz;i � ðmz;i � dz;iÞ �mx;i

ðmy;i � dy;iÞ �mx;i � ðmx;i � dx;iÞ �my;i

0BB@
1CCA
4.2.2. Computing the translation
With the optimal rotations successfully calculated, the optimal

translation is determined by minimizing the term:

ET ¼
X
j!k

X
i

ðtk � tj þ Rkcd � RjcmÞ2:

Rkcd � Rjcm is abbreviated with Rj,k:

ET ¼
X
j!k

X
i

ðtk � tjÞ2 � 2ðtk � tjÞRj;k þ R2
j;k:

Using the matrix notation:

ET ¼ TT BTþ 2ATþ
X
j!k

X
i

R2
j;k

this is achieved by solving the linear equation system:

BTþ A ¼ 0

Here, B is given by:

Bj;j ¼
P
j!k

k!j
I3�3
case j < k:
Bj;k ¼ �
X
j!k

I3�3

case j > k:

Bj;k ¼ �
X
j!k

I3�3;

and A by:

Aj ¼
X
j!k

Rjcm � Rkcd �
X
k!j

Rjcm � Rkcd:
4.3. Uncertainty-based global registration

Under the assumption that two poses X0j and X0k are related by
the linear error metric E0j;k we wish to minimize the Mahalanobis
distance that describes the global error of all the poses:
W ¼
X
j!k

ðEj;k � E0j;kÞ
T C�1

j;k ðE0j;k � E0j;kÞ

¼
X
j!k

ðEj;k � ðX0j � X0kÞÞC
�1
j;k ðE0j;k � ðX

0
j � X0kÞÞ: ð18Þ

The error between two poses is modeled by the Gaussian distri-
bution ðEj;k;Cj;kÞ. In matrix notation, W becomes:

W ¼ ðE�HXÞT C�1ðE�HXÞ:

Here H is the signed incidence matrix of the pose graph, E is the
concatenated vector consisting of all E0j;k and C is a block-diagonal
matrix comprised of C�1

j;k as submatrices. Minimizing this function
yields new optimal pose estimates. The minimization of W is
accomplished via the following linear equation system:

ðHT C�1HÞX ¼ HT C�1E
BX ¼ A:

The matrix B consists of the submatrices

Bj;k ¼
Pn
k¼0

C�1
j;k ðj ¼ kÞ

C�1
j;k ðj – kÞ:

8><>:
The entries of A are given by:

Aj ¼
Xn

k¼0
k – j

C�1
j;k Ej;k:

In addition to X, the associated covariance of CX is computed as
follows:

CX ¼ B�1

The actual positional error of two poses Xj and Xk is not linear:

Ej;k ¼
Xm

i¼1

kXj � di � Xk �mik2 ¼
Xm

i¼1

kZiðXj;XkÞk2
:

Analogous to the simple 2-scan case the linearized pose differ-
ence E0j;k is obtained by use of a Taylor expansion of Zi(Xj,Xk):

ZiðXj;XkÞ � ZiðXj;XkÞ � rXj
ZiðXj;XkÞDXj �rXk

ZiðXj;XkÞDXk

	 

:

Here,rXj
refers to the derivative with respect to Xj. Utilizing the

same matrix decomposition Mi H of rZiðXÞ as in the 2-scan case
Zi(Xj,Xk) is approximated as:

ZiðXj;XkÞ � ZiðXj;XkÞ �MiE
0
j;k;

where E0j;k is the linear error metric given by:

E0j;k ¼ ðHjDXj �HkDXkÞ ¼ ðX0j � X0kÞ:

E0j;k is linear in the quantities X0j that will be estimated by the algo-
rithm. Again, the minimum of E0j;k and the corresponding covariance
are given by

Ej;k ¼ ðMT MÞ�1MT Z

Cj;k ¼ s2ðMT MÞ:

Here Z is the concatenated vector consisting of all
Zi ¼ Xj � di � Xk �mi.

Note that the results have to be transformed in order to obtain
the optimal pose estimates, just like in the simple 2-scan case.

Xj ¼ Xj �H�1
j X0j;

Cj ¼ ðH�1
j ÞC

X
j ðH

�1
j Þ

T
:



Table 1
Overview of the complexity of n-scan registration methods. n denotes the number of
3D scans.

Registration algorithm Number of equations

Helix transform (6n)3

Small angle approximation (3n)3 + (3n)3

Uncertainty-based (Euler) (6n)3

Uncertainty-based (quaternion) (7n)3

Fig. 5. Sparse matrix of the linear system of equations. Matrix entries that are not zero are
presented in Fig. 1.

Fig. 6. The data set Rosenstein palace. To
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5. Summary of n-scan registration methods

In the previous section we have derived different global regis-
tration methods. We assumed to have a network of overlapping
scans. All methods have in common that the problem is reduced
to solving a system of linear equations. Table 1 summarizes the
computational complexity of the presented methods. It presents
the number of linear equations to be solved. Note: With growing
printed in white. This matrix occurs when optimizing over all 3D scans of the scene

p: Bird eye view. Bottom: 3D views.



Fig. 7. Top left: Schema of the airborne based acquisition of reference data. Top right: 3D map consisting of aerial laser data and extrapolated 2D reference data. Bottom:
Airborne and 3D map (black) with superimposed 3D scans (gray).
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Fig. 8. Convergence of the registration of two scans using different algorithms.
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3D scene sizes the constants usually hidden in the Landau notation
are important in practical applications.

The appendix contains the proofs that the resulting linear sys-
tem can be solved by a Cholesky decomposition, since it is posi-
tive definite. Furthermore, in practical applications it turns out
that the matrix is sparse (cf. Fig. 5). Therefore, algorithms for
solving sparse systems, i.e., the sparse Cholesky decompositions
are applicable [13].
6. Experiments and results

6.1. Registration of terrestrial 3D laser scans

Initial tests have been carried out with data obtained from
Rosenstein palace, near Stuttgart using a Leica HDS 3000 laser
scanner [40]. The data set consists of five 3D scans covering all
sides of the palace. After a visual inspection of the scan matching



Table 2
Run time comparison (Intel(R) Q9450 at 2.66 GHz, single threaded) for our linear
solutions for the 2-Scan problem in comparison to closed form solutions. The timing
for Rosenstein palace have been averaged over 4 3D-scan registrations. The data of
the set HANNOVER2 were reduced using an octree with edge-length 10 cm and averaged
over 923 scan registrations. Significant run time improvements are obtained in the n
scan case (see also Tables 1 and 3).

Registration algorithm Run time Run time
(Rosenstein palace) (HANNOVER2)

Helix Transform 2.232 s 0.1407 s
Small Angle Approximation 2.230 s 0.1402 s
Uncertainty-Based (Euler) 2.437 s 0.1581 s
Uncertainty-Based (quaternion) 2.388 s 0.1450 s
Closed form (SVD) [1] 2.502 s 0.1803 s
Closed form (quaternion) [25] 2.475 s 0.1613 s
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Fig. 9. Convergence of the registration of scan number 80 (top: translational error, bottom
correspond to the first relaxation (trajectory A-B-C-D-A-B) while the second 150 iteration
A).
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result, e.g., as given in Fig. 6 we made the conclusion that all the
linearization methods are in principle able to correctly match 3D
scans globally.

Next, we aim to systematically evaluate 3D scan matching as
it appears in practical applications. Unfortunately, a simulated
evaluation of the minimization step, i.e., using a randomly gen-
erated point cloud as a source for several 3D scans with small
errors in their poses is infeasible. The usual procedure is to
minimize the error metric in the proposed fashion using perfect
point correspondences, thus eliminating any error introduced by
incorrect point pairs. Since locally accumulating minimization
errors lead to incorrect correspondences, this unfairly rewards
local approaches while global registration algorithms are
penalized.
: rotational error) using different minimization algorithms. The first 150 iterations
s represent the result after registration of 384 3D scans (trajectory A-B-C-D-A-B-E-F-



-250

-200

-150

-100

-50

 50

 0  50  100  150  200  250  300

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0  50  100  150  200  250  300

Fig. 10. Same as Fig. 9 but for scan number 150 using the different minimization algorithms.
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6.2. Systematic tests in an urban environment

These experiments have been made using the data of the Ro-
botic 3D Scan Repository [52]. Implementations of the four meth-
ods can be found in [55]. The data set HANNOVER2 (cf. Fig. 2) has been
acquired in an urban area and contains 924 3D scans each contain-
ing up to 35,000 3D data points. It was acquired by a robot carrying
a continuously rotating 3D scanner [49]. For the data set HANNOVER2

ground truth data in form of a 2D map provided by the German
land registry office (Katasteramt) is available. This map contains
the buildings with a precision of 1 cm. This quality was ensured
at the time the map was generated by geodesy using conventional
surveying equipment. In addition, we obtained airborne based 3D
data. The accuracy of the airborne data is in the cm range, too, since
a precise DGPS and IMU in combination with a 2D airborne scanner
has been used. Based on this data so-called reference data is gen-
erated as follows (see Fig. 7): the 2D map contains lines represent-
ing buildings and it is extrapolated to 3D by creating 3D points, i.e.,
for every line, we generate 3D points from the ground level up to
10 m with a 25 cm discretization. These 3D points are fused with
the 3D data from the airplane. The result is a precise 3D reference
map. Using this 3D reference map, we generate ground truth poses
for all 924 3D laser scans by matching the scans with the reference
map. To these poses we will refer to as ‘‘ground truth”.

6.2.1. Registration of two scans
We analyzed the registration of two 3D scans to ensure our

methods work correctly. Fig. 8 shows the convergence of the ICP
algorithm using the different minimization algorithms. The helix
transform, the small angle approximation, and the uncertainty-
based optimization using Euler angles behave like the closed-form
solutions, i.e., the value of the error function Eq. (1) is identical to
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Fig. 11. Convergence of the registration of scan number 200 (top: translational error, bottom: rotational error) using different minimization algorithms. These 150 iterations
correspond to the second relaxation (sequence: A-B-C-D-A-B-E-F-A).
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the closed-form solution. Thus the convergence speed and the final
pose are equal. The convergence graphs from the remaining 923
registrations are similar to the one presented in Fig. 8. We con-
clude, that the step length computed by our linearized methods
are close to the optimal step length. For the experiments we used
a maximal point-to-point distance threshold of 25 cm. However,
the quaternion based method shows slightly different behavior,
which is due to the fact that it requires normalization afterward.

Table 2 shows the computational requirements for our linear
solutions in comparison with the SVD [1] and quaternion non-lin-
ear solution [25]. The runtime is averaged over ten runs over the
whole data set (5 scans Rosenstein palace, 924 scans HANNOVER2).
The closed-form solutions are slightly outperformed by the linear
ones, since only a linear system of equations has to be solved using
the Choleskey decomposition. Since Uncertainty-based (Euler)
computation requires the computation of sine and cosine it is
slightly less performant.

6.2.2. Registration of n-scans
We compared the incrementally used ICP algorithm by matching

a sequence of 924 3D scans (a video is given using the following link:
http://plum.eecs.jacobs-university.de/submissions/large_slam.mpg).
Here we matched every 3D scan against its predecessor and take into
account that errors sum up. After we returned with the scanner to
the origin a loop was closed. We applied the global relaxation and
analyzed the error function minimization. Fig. 9 and Fig. 10 presents
the results for two 3D scans (Nos. 80 and 150). The figures show the
position error of these scans (top) that was computed using the
difference to the reference position and the orientational error
(bottom) that was computed by first calculating the rotation needed

http://plum.eecs.jacobs-university.de/submissions/large_slam.mpg
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Fig. 12. Same as Fig. 11 but for scan number 384 using the different minimization algorithms.
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to map the scan matching result to the reference orientation and
then computing the axis-angle representation. The resulting angle
describes the made error. The figures report the error for two loop
closings, i.e., the first relaxation was up to iteration 150, the second
one up to iteration 300. In Fig. 9 the optimization starts with a cor-
rect guess, and the scans are moved to gain a better mutual fit, but
relocates them away from ground truth. The ground truth poses
are unknown to the optimization process. In Fig. 10, we see that all
methods converge to stable different minima and with the exception
of the quaternion algorithm, the final minimum is close to the
ground truth.

The first loop uses the first 150 3D scans. Scan No. 80 (cf. Fig. 9)
resides in the middle of the loop. Following the analogy of the
spring system (cf. Fig. 3) scans in the middle of the loops are moved
only very slowly, since the main inconsistencies occur at the loop
closing, e.g., at Scan No. 150 (cf. Fig. 10) and this needs to be prop-
agated through the whole spring system.

Figs. 11 and 12 show the precision of two 3D scans that reside in
the second loop closing. Two methods, namely the small angle
approximation and the uncertainty-based quaternion solution
show convergence to incorrect minima for scan No. 200, while
for scan No. 384 only the quaternion solutions seams to be incor-
rect. Note that the error of the small angle approximation is due
to misalignment errors on the y-coordinate, i.e., the height of the
scans.

The best performance in terms of position accuracy is achieved
by the helix transform and the uncertainty-based optimization
using Euler angles (cf. Fig. 13 and Table 3). As expected, globally
consistent scan matching reduces the position error at the posi-
tions, where the loop is closed, e.g., Fig. 13 at scan index 100, where
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Fig. 13. Final error, after sequential registration of all 3D scans and globally consistent scan matching (distance to ground truth positions (top) and rotational error (bottom)
(see Fig. 1 and the corresponding video).

Table 3
Run times and final summed error over all 924 3D scans. Run times apply only for the
SLAM back-end and were taken on an Intel(R) Q9450 at 2.66 GHz, using single
threaded computations.

Registration algorithm Run
time

Summed
position
error

Summed
orientation
error

Helix transform 44.134 s 10418.54 6263.81
Small angle approximation 34.001 s 11026.47 6235.12
Uncertainty-based (Euler) 50.459 s 10819.15 6133.44
Uncertainty-based (quaternion) 84.592 s 15261.31 4635.24
Locally consistent with helix 40.103 s 16411.85 3813.83
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the first loop was closed and at the indices 300–400 and 600–700.
The locally consistent reference method shows increasing error.

The rotational error is low for all relaxation methods. The rea-
son for this is that the used starting guesses for optimization are
already quite good as they are produced by the locally applied
ICP algorithm and the IMU starting guess. Please refer to [8] for
more details for the system overview. The rotational errors have
a large variation range and are therefore hard to judge.

Run times for the benchmarking data set are also given in Table 3.
In terms of run time, the small angle approximation outperforms all
other methods due to the small number of equations in the linear
system (see Table 1) and the simple computing scheme for the
matrix entries. The uncertainty-based methods are not so perfor-
mant due to the additionally required computations like the trans-
formation of the poses with matrix H. Please note, the overall run
time is dominated by the search for closest points, which is not given
in the table.

We have made experiments with iterating the minimization of
the global error function, without re-searching for closest points.
This approach is used by bundle adjustment [46] to find a good
minimum. Since no major pose changes are computed further iter-
ations, we conclude, that the computed step length is close to the
optimal one. The one-step solution using new closest points is
more effective.

Additional experiments for the registration of n scans with
other data sets provided by the Robotic 3D Scan Repository [52]
support the statement, that the helix transform and the uncer-
tainty based optimization using Euler angles perform best.

6.3. Interpretation of the results

The experiments show that global registration of many 3D
scans yield a complex and fragile optimization system. Small
variances in the calculated matrices yield different closest point
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pairs in the following iteration, which in turn result in different
matrices. Most stable results with respect to the final pose esti-
mates of the 3D scans can be reported for the approximation of
the error function using the helix transform and the uncertainty-
based optimization using Euler angles. The quaternion based ap-
proach needs a re-normalization step to compute orthonormal
rotation matrices, i.e., it leaves the group of rotations. Thus, it is
most likely to fail and we do not recommend using it. Table 4
shows our judgment of the difficulty to deriving the linearization
and implementing it.

All minimization algorithms deform the map while optimizing,
such that the outer parts of the map, i.e., the height of the regions
close to C, L and I are raised. After several optimization steps the
map converges due to the iterative fashion of the algorithm. Linear-
ization usually has the effect that mapped loops are too large [18].
The local optimal reference method do not make major changes to
the locations of scans and the result using this method largely de-
pends on the quality of initial pose guesses (see also Fig. 3, left).

Our experiments have shown that the helix transform performs
qualitatively as good as the uncertainty-based algorithm using Eu-
ler angles. Thus, we now propose a novel algorithm that combines
the positive aspects, i.e., we develop an uncertainty-based helix
registration method.
7. An uncertainty-based registration using the helix transform

The detailed analysis above has motivated the idea of an uncer-
tainty-based algorithm using the helical motion. As with the
uncertainty-based registration with Euler angles or quaternions
the Mahalanobis distance Eq. (18) is minimized in order to com-
pute the global pose estimates and their covariances. The mini-
mum is given as the solution to the linear equation system
BX = A, where B and A are constructed with the quantities Ej;k

and C�1
j;k as in Section 4.3. Ej;k ¼ ðMT MÞ�1MT Z and C�1

j;k ¼ s2ðMT MÞ
are calculated according to the corrected values for M and Z that
follow from the derivation for the Helix transform error metric:

E ¼
X
j!k

X
i

mi � di þ ð�xj þ xj �miÞ � ð�xk þ xk �miÞ
�� ��2

¼
Xm

i¼1

kZiðXj;XkÞk2
:

Since the derivation is identical to the one in Section 4.3 we give
the matrix decomposition that is central for calculating Ej;k and
C�1

j;k :

Mi ¼
0 mz;i �my;i 1 0 0
�mz;i 0 mx;i 0 1 0
my;i �mx;i 0 0 0 1

0B@
1CA

H ¼ I6�6:

Comparing both helix transform based registrations reveals that
the only difference is that the uncertainty-based registration intro-
duces the value s2, see Eq. (15), which scales the covariances. For a
Table 4
Difficulty of deriving and implementing a global optimal solution. Straightforward
calculations and implementations are marked with ‘‘+”, while more difficult
approaches are marked with ‘‘�”.

Registration algorithm Deriving the
solution

Implementation
simplicity

Helix transform + +
Small angle approximation ++ ++
Uncertainty-based (Euler) �� +
Uncertainty-based (quaternion) � +
constant s over all pairs or the simple 2-scan case the solution gi-
ven by the non-uncertainty-based registration is identical to the
one without using uncertainties.
8. Conclusions and outlook

This paper contained three major contributions: firstly, we
summarized existing locally and globally optimal scan matching
methods and extended them by a working global helix-based reg-
istration, by a small angle approximation, and an uncertainty-
based registration using the helix transform. All methods approxi-
mate a closed-form solution for iterative closest point algorithms.
As our experiments have demonstrated, it is not recommended
to use the uncertainty-based registration using quaternions, since
it does not stay in the SO(3) group and requires re-normalization.
Secondly, we discussed the run time of the algorithms by stating
the number of equations that have to be solved. Thirdly, we
exhaustively evaluated the global scan matching by comparing
scan poses with a genuine truth and discussed the outcomes. A
minor contribution of the paper is that we showed the linear sys-
tem of equations is for the registration using the helix transform is
equal to the system one derives when using the small angle
approximation. Another minor contribution is that we have dem-
onstrated that the use of the helix transform in a probabilistic con-
text changes the system of equations only by a scaling factor.

The presented algorithms establish the foundation for mapping
in 3D using 3D laser scanners. The applications are large scale sys-
tems ranging from terrestrial laser scanning, survey and geodesy to
robotic mapping. In the latter research field probabilistic methods
are state of the art [42]. This paper has showed, that deterministic
modelings of the scan registration problem, i.e., by using the helix
transform, yield the same performance as probabilistic ones, i.e.,
uncertainty-based optimization using Euler angles or differ only
about a constant factor, for example the uncertainty-based optimi-
zation using the helix transform.

Needless to say a lot of work remains to be done. In future work
we are aiming at finding a closed-form solution to get rid of the
linearization and the problems due to it. Section 3.1 outlines the
math for the two-scan case. The open question remains, if such
methods are extendable to multiple scan registrations. Initial
progress is available here by Yguel, who derived a closed-form
solution for the 2-scan registration problem, incorporating the
Mahalanobis distance [50].

Furthermore, in future work we plan to apply the proposed
algorithms to large scale experiments, i.e., to 3D mapping of cities.
Then, the back-end, i.e., solving the system of linear equations be-
comes the bottleneck, while it is currently the front-end search for
closest points, i.e., n� N, where n is the number of poses and N is
the number of 3D points per scan. This will need to include recent
results from the SLAM community, e.g., the work presented in
[17,34,35] that aim to reduce the run time of the SLAM back-end.
In this paper we used CSPARSE, a sparse Cholesky decomposition,
to speed up the matrix operations [13,9].
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Appendix A

For all registration algorithms described in this paper, some ma-
trix B is inverted. Because these matrices can become very large, it
is desirable to use fast matrix inversion techniques such as the
Cholesky decomposition. In order for this to be effective, the matrix
in question needs to be positive definite. The following sections
provide proofs of this property for each registration algorithm. In
each section the notation for the respective algorithms are utilized.

A.1. Helix transform

B is by the definition:

XT � B � X ¼
X
j!k

X
i

ðð�cj þ cj �miÞ � ð�ck þ ck �miÞÞ2 P 0

positive semi definite. Since any n-scan problem includes the link
0 ? 1 it is sufficient to showX

i

ð�c1 þ c1 �miÞ2 – 0;

for all c1; �c1 – 0. The solution space of �c1 þ c1 �mi ¼ 0 is in the
form of two lines parallel to c1. In practice no 3D scan satisfies such
a condition.

A.2. Small angle approximation

The solution matrix B for the rotation is positive semi definite
by definition:

XT � B � X ¼
X
j!k

X
i

Mi � Xj � Di � Xk

� �2ðmi � diÞ:

It is only necessary to showX
i

Di � X1ð Þ2 > 0

or equivalentlyX
i

X1 � di – 0;

for all X1 – 0. This holds true for all di – 0.
The matrix B that is required for the recovery of the translation

is defined by:

XT � B � X ¼
X
j!k

X
i

ðtk � tjÞ2:

This is always greater than zero for any tk – tj. Since t0 equals
zero B is positive definite.

A.3. Uncertainty-based global registration

First, it is proven that B is positive definite under the condition
that the covariances Ci,j are positive definite. Second, the property
of positive definiteness is shown for the covariances of both the
Euler and quaternion representation.

Induction base m = n: Assuming a graph with n + 1 nodes and n
links, the matrix B is transformed into a matrix B0, by

B0 ¼ IDBIT
D;

with an upper-right triangular matrix ID of six-dimensional identity
matrices
ID ¼
I6�6 . . . I6�6

. .
. ..

.

0 I6�6

0BB@
1CCA

Since B0 is given by

B0j;j ¼ C�1
j�1;j

B0j;k ¼ 0 ðj – kÞ

and all covariances are positive definite, B0 itself is positive definite.
The same holds for B, as ID is invertible.

Inductive step m ? m + 1: Let B be a positive definite matrix that
corresponds to a graph with n + 1 nodes and m links. An additional
link between the nodes Xj and Xk is inserted, with the positive def-
inite covariance Ci,j. Without loss of generality, Xi is to be the fixed
pose at 0. Thus, the resulting matrix B0 is changed only at
submatrix

B0k;k ¼ Bk;k þ C�1
j;k :

B0 is positive definite, iff

XT B0X > 0 X – 0;

which is equivalent toXn

m;l¼1

XT
mB0m;lXl > 0 Xm – 0: ð19Þ

Eq. (19) is expanded toXn

m;l¼1

XT
mB0m;lXl ¼ XT

k B0k;kXk þ
Xn

m;l¼1
m – k – l

XT
mBm;lXl

¼ XT
k C�1

j;k Xk þ
Xn

m;l¼1

XT
mBm;lXl ¼ XT

k C�1
j;k Xk þ XT BX > 0:

B0 is a positive definite matrix.
Euler angles: The covariance Cj,k is given by

Cj;k ¼ s2MT M:

It can be safely assumed that s2 > 0. Therefore, Cj,k is positive
definite iff

XT MT MX > 0

or simply:X
i

MiX – 0;

which is equivalent to:

X
i

hx

hz

�hy

0B@
1CA�mi –

tx

ty

tz

0B@
1CA

for X – 0. While this is not true iff all points mi lie on two parallel
lines, Cj,k is positive definite for all real data sets.

Quaternions: As above, Cj,k is positive definite iff:

XT MT MX > 0

or simply:X
i

MiX – 0
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which is equivalent to:

X
i

pmi �
q

r

s

0B@
1CA�mi –

tx

ty

tz

0B@
1CA

for X – 0. As above this is true for all real data sets.
Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.cviu.2010.03.007.
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