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Documentation

This document describes the algorithms for 6D SLAM – Simultaneous 6 D.O.F.
Localization and 3D Mapping system. 6D SLAM with mobile robots considers
six dimensions for the robot pose, namely the x, y and z coordinates and the
roll, yaw and pitch angles. Robot motion and localization on natural surfaces,
e.g., driving with a mobile robot outdoor, must necessarily regard these degrees
of freedom.



1 Range Image Registration and Robot Relocalization

Multiple 3D scans are necessary to digitalize environments without occlusions. To create
a correct and consistent model, the scans have to be merged into one coordinate system.
This process is called registration. If robot carrying the 3D scanner were precisely local-
ized, the registration could be done directly based on the robot pose. However, due to
the unprecise robot sensors, self localization is erroneous, so the geometric structure of
overlapping 3D scans has to be considered for registration.

The following method for registration of point sets is part of many publications, so only
a short summary is given here. The complete algorithm was invented in 1992 and can be
found, e.g., in [2]. The method is called Iterative Closest Points (ICP) algorithm.

Given two independently acquired sets of 3D points, M (model set, |M | = Nm) and D

(data set, |D| = Nd) which correspond to a single shape, we aim to find the transformation
consisting of a rotation R and a translation t which minimizes the following cost function:

E(R, t) =

Nm∑

i=1

Nd∑

j=1

wi,j ||mi − (Rdj + t)||2 . (1)

wi,j is assigned 1 if the i-th point of M describes the same point in space as the j-th point
of D. Otherwise wi,j is 0. Two things have to be calculated: First, the corresponding
points, and second, the transformation (R, t) that minimize E(R, t) on the base of the
corresponding points.

The ICP algorithm calculates iteratively the point correspondences. In each iteration step,
the algorithm selects the closest points as correspondences and calculates the transforma-
tion (R, t) for minimizing equation (1). The assumption is that in the last iteration step
the point correspondences are correct. Besl et al. prove that the method terminates in a
minimum [2]. However, this theorem does not hold in our case, since we use a maximum
tolerable distance dmax for associating the scan data. Such a threshold is required, given
that the 3D scans overlap only partially. Fig. 1 (top) shows three frames, i.e., iteration
steps, of the ICP algorithm. The bottom part shows the start poses (x, z, θy) from which
a correct matching is possible, here with only three degrees of freedom.

1.1 Calculation of the rotation and translation

In every iteration the optimal tranformation (R, t) has to be computed. Eq. (1) can be
reduced to

E(R, t) ∝
1

N

N∑

i=1

||mi − (Rdi + t)||2 , (2)

with N =
∑Nm

i=1

∑Nd

j=1
wi,j, since the correspondence matix can be represented by a vector

containing the point pairs.
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Figure 1: Left: Initial odometry based pose of two 3D scans. Middle: Pose after five ICP
iterations. Right: final alignment, pairwise matching.

Four methods are known to minimize eq. (2) [3]. The 6D SLAM system uses the following
one, based on singular value decomposition (SVD), is robust and easy to implement,
thus we give a brief overview of the SVD-based algorithms. It was first published by
Arun, Huang and Blostein [1]. The difficulty of this minimization problem is to enforce
the orthonormality of matrix R. The first step of the computation is to decouple the
calculation of the rotation R from the translation t using the centroids of the points
belonging to the matching, i.e.,

cm =
1

N

N∑

i=1

mi, cd =
1

N

N∑

i=1

dj (3)

and

M ′ = {m′

i = mi − cm}1,...,N , (4)

D′ = {d′

i = di − cd}1,...,N . (5)

After replacing (3), (4) and (5) in the error function, E(R, t) eq. (2) becomes:

E(R, t)∝
1

N

N∑

i=1

||m′

i − Rd
′

i − (t − cm + Rcd)
︸ ︷︷ ︸

=t̃

||
2

=
1

N

N∑

i=1

||m′

i − Rd
′

i||
2

(6a)

−
2

N
t̃ ·

N∑

i=1

(m′

i − Rd
′

i) (6b)

+
1

N

N∑

i=1

∣
∣
∣
∣t̃
∣
∣
∣
∣
2
. (6c)
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In order to minimize the sum above, all terms have to be minimized. The second sum
(6b) is zero, since all values refer to centroid. The third part (6c) has its minimum for
t̃ = 0 or

t = cm − Rcd. (7)

Therefore the algorithm has to minimize only the first term, and the error function is
expressed in terms of the rotation only:

E(R, t) ∝

N∑

i=1

||m′

i − Rd
′

i||
2
. (8)

Theorem: The optimal rotation is calculated by R = V U
T . Herby the matrices V and

U are derived by the singular value decomposition H = UΛV
T of a correlation matrix

H . This 3 × 3 matrix H is given by

H =

N∑

i=1

m
′T
i d

′

i =





Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz



 , (9)

with Sxx =
∑N

i=1
m′

ixd
′

ix, Sxy =
∑N

i=1
m′

ixd
′

iy, . . . . The analogous algorithm is derived
directly from this theorem.

Proof: Since rotation is length preserving, i.e., ||Rd
′

i||
2= ||d′

i||
2 the error function (8) is

expanded

E(R, t) ∝

N∑

i=1

||m′

i||
2
− 2

N∑

i=1

m
′

i · Rd
′

i +

N∑

i=1

||d′

i||
2
.

The rotation affects only the middle term, thus it is sufficient to maximize

N∑

i=1

m
′

i · Rd
′

i =

N∑

i=1

m
′

i

T
Rd

′

i. (10)

Using the trace of a matrix, (10) can be rewritten to obtain

tr

(
N∑

i=1

Rd
′

im
′

i

T

)

= tr (RH) ,

With H defined as in (9). Now we have to find the matrix R that maximizes tr (RH).

Assume that the singular value decomposition of H is

H = UΛV
T ,
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with U and V orthonormal 3×3 matrices and Λ a 3×3 diagonal matrix without negative
elements. Suppose

R = V U
T .

R is orthonormal and

RH = V U
T
UΛV

T

= V ΛV
T

is a symmetric, positive definite matrix. Arun, Huang and Blostein provide a lemma to
show that

tr (RH) ≥ tr (BRH)

for any orthonormal matrix B. Therefore the matrix R is optimal. Prooving the lemma
is straightforward using the Cauchy-Schwarz [1]. Finally, the optimal translation is cal-
culated as (cf. eq. (6c) and (7))

t = cm − Rcd.

2 ICP-based 6D SLAM

To match two 3D scans with the ICP algorithm it is necessary to have a sufficient starting
guess for the second scan pose.

• Extrapolate the odometry readings to all six degrees of freedom using previous regis-
tration matrices. The change of the robot pose ∆P given the odometry information
(xn, zn, θy,n), (xn+1, zn+1, θy,n+1) and the registration matrix R(θx,n, θy,n, θz,n) is cal-
culated by solving:











xn+1

yn+1

zn+1

θx,n+1

θy,n+1

θz,n+1











=











xn

yn

zn

θx,n

θy,n

θz,n











+











R(θx,n, θy,n, θz,n) 0

1 0 0
0 0 1 0

0 0 1











·











∆xn+1

∆yn+1

∆zn+1

∆θx,n+1

∆θy,n+1

∆θz,n+1











.

︸ ︷︷ ︸

∆P

(11)

Therefore, calculating ∆P requires a matrix inversion. Finally, the 6D pose P n+1

is calculated by

P n+1 = ∆P · P n

using the poses’ matrix representations.
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Figure 2: Left handed coordinate system.

3 Variable Correspondences

(R, t) double alignxf[16] Transformation Matrix
mi, di class PtPair Point Pair
cm, cd double cm[3], cd[3] Centroids
m

′

i, d
′

i double** m, d Centered Point Pairs
H , U , Λ, V Matrix SVD Matrices
R double transMat[16] Pose as Matrix
(xn, yn, zn) double rPos[3] Position of n-th 3D Scan
(θx,n, θy,n, θz,n) double rPostheta[3] Rotation of n-th 3D Scan

4 File Formats and Units

The coordinate system is left handed, with the y axis pointing upwards, and the depth
axis z (cf. Figure 2). Input and output files are:

1. The 3D scan files (scanXXX.3d)1 have to be of the following structure:
The first line contains the scan’s resolution (w x b), followed by lines of data points
(x, y, z).

2. The pose files (scanXXX.pose)1 associated with each 3D scan contain information
of the estimated pose of the respective scan as given by, e.g., odometry. The first
line contains the 3 translatorial positions (x, y, z), the second the rotations pitch,
yaw and roll (θx, θy, θz around the respective axis) in deg.
Values that are not estimated by the robot (odometry) can be set to 0 and are
extrapolated as described by Eq. (11).

3. The SLAM program generated files scanXXX.frames, consisting of the transforma-
tions computed from the scan matching. Each line contains a 4 × 4 OpenGL-style
matrix. The very last matrix is the final transformation for registering the scan into
the common coordinate system.

1stating with XXX = 000, 001,. . . , until no more files are found in the specified directory.
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The matrix is stored in the following format:

(R[1, 1], R[1, 2], 0, R[1, 3], 0, R[2, 1], R[2, 2], R[2, 3], 0, R[3, 1], R[3, 2], R[3, 3], 0,
t[1], t[2], t[3], 1),

with R[x, y] the (x, y)-th entry of the rotation matrix R, and t[x] the x-th translation
component of t.

5 Requirements

All executables can be compiled and used both with Linux and Windows.

Linux: The system was developed and tested under Linux 9.1 with the g++ compiler
version 3.3.3. As additional library, OpenGL and glut have to be installed, which
should be included in your Linux distribution (tested with freeglut 2.2.0-78).
To compile, type in make in the main directory. The executables are generated in
the ./bin directory.

Windows: The system was tested with the C++ compiler from Microsoft Visual Stu-
dio.NET 2005. To compile, load the respective project file (.sln) from the direc-
tory .\Visual_Studio_Projects\. The executables are generated in the respective
Debug or Release directories, depending on your compiler settings.
Precompiled versions can be found in the ./bin directory, too. If moving the exe-
cutables, take care about the glut directory as well.

6 Usage

For a detailed explanation about the programs’ usage, just start the respective binary.
Both applcations can be configured by a set of command line parameters, which are
explained when starting the program as mentioned above.

Especially, take care of the reduction parameters -r/-R of the SLAM system: Without
using one of those, the registration is being slowed down tremendously due to taking all
data points as input. Other potentially critical parameters are the maximal distance of
points that may form corresponding point pairs (matrix entries wij , parameter -d), as
well as the maximal range distance of points used for scan matching or displaying (-m),
especially used for eliminating outliers (i.e., data points with the maximal range distance
of the range finder).
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