
GPU-accelerated Nearest Neighbor Search for

3D Registration

Deyuan Qiu1, Stefan May2, and Andreas Nüchter3

1 University of Applied Sciences Bonn-Rhein-Sieg⋆⋆,
Sankt Augustin, Germany

dqiu2s@smail.inf.h-brs.de
2 INRIA, Sophia-Antipolis, France

stefan may@arcor.de
3 Jacobs University Bremen, Germany

andreas@nuechti.de

Abstract. Nearest Neighbor Search (NNS) is employed by many com-
puter vision algorithms. The computational complexity is large and con-
stitutes a challenge for real-time capability. The basic problem is in
rapidly processing a huge amount of data, which is often addressed by
means of highly sophisticated search methods and parallelism. We show
that NNS based vision algorithms like the Iterative Closest Points algo-
rithm (ICP) can achieve real-time capability while preserving compact
size and moderate energy consumption as it is needed in robotics and
many other domains. The approach exploits the concept of general pur-
pose computation on graphics processing units (GPGPU) and is com-
pared to parallel processing on CPU. We apply this approach to the 3D
scan registration problem, for which a speed-up factor of 88 compared
to a sequential CPU implementation is reported.

Key words: NNS, GPGPU, ICP, 3D registration, SIMD, MIMD

1 Introduction

Nearest Neighbor Search (NNS) algorithms aim to optimize the process of find-
ing closest points in two datasets with respect to a distance measure. It is a
commonly employed geometrical algorithm in computer vision. In the context
of 3D vision, NNS is used frequently in 3D point cloud registration. The regis-
tration of large data sets, such as acquired by means of modern 3D sensors, is
computationally expensive.

In recent years, growing interest has been attracted by GPUs (Graphics Pro-
cessing Units) on account of their immense computational power assembled in
compact design. Increasing programmability enables general purpose computa-
tion and yields a powerful massively parallel processing alternative to conven-
tional multi-computer or multi-processor systems. Moreover, costs of commodity
graphic cards are lower when measured in cost per FLOPS.

⋆⋆ This work was supported by B-IT foundation, Applied Sciences Institute, a coopera-
tion between Fraunhofer IAIS and University of Applied Sciences Bonn-Rhein-Sieg.



2 Deyuan Qiu et al.

Being of a recursive nature, traditional NNS is difficult to be implemented
on GPUs. We take advantage of Arya’s priority search algorithm [1], to fit NNS
in the SIMD (Single Instruction Multiple Data) model, so that it is possible to
be accelerated by use of a GPU. GPU-NNS, the proposed algorithm, is imple-
mented using CUDA, nVidia’s parallel computing architecture [10]. Additional
approaches are also applied to accelerate the NNS process, such as single-element
priority queue and array-based k-d tree (see 3.1). GPU-NNS is used to implement
a 3D registration algorithm: GPU-ICP (see 3.2). As a standard scan matching al-
gorithm, ICP is widely used for 3D data processing [6]. The analysis on the stan-
dard sequential CPU-based ICP algorithm shows that the most time-consuming
part of ICP is NNS. In the proposed GPU-ICP implementation, not only NNS,
but also the remaining stages are accelerated by GPU. The experiment shows
that GPU-ICP performs 88 times faster than a kd-tree based sequential CPU
ICP algorithm, which runs on a Intel Core 2 Duo E6600 CPU.

The following sections are structured as follows: Section 2 outlines work re-
lated to GPU-based NNS. Section 3 explains our GPU-NNS and GPU-ICP im-
plementation. Section 4 analyzes the results of two experiments: registering two
3D scans and indoor 3D mapping. Section 5 concludes with an outlook on future
work.

2 Related Work

NNS is typically implemented using brute force methods on GPUs, which are by
nature highly parallelizable. This property makes brute force based NNS meth-
ods easily adaptable for a GPU implementation and there have been a couple
of implementations available. Purcell et al. used cells to represent photon loca-
tions [11]. By calculating the distances between the photons in the cells that
are intersected with a search radius, and a query point, k nearest neighbors are
located to estimate the radiance. Purcell et al. stressed that k-d tree and priority
queue methods are efficient but difficult to be implemented on GPU [11]. Bustos
et al. stored indices and distance information as quaternions in RGBA channels
of a texture buffer. They used three fragment programs to calculate Manhattan
distances and to minimize them by reduction [2]. Rozen et al. adopted a bucket
sort primitive to search nearest neighbors [12]. Van Kooten et al. introduced a
projection based nearest neighbor search method for the particle repulsion prob-
lem [14], which chooses a viewport encompassing every particle (or as many as
possible), and projects particles onto a projection plane. The approach takes ad-
vantage of the hardware accelerated functionalities of GPUs, such as projection
and 2D layout of the texture buffer for grid calculation. Garcia et al. imple-
mented a brute force NNS approach using CUDA, showing that it is multiple
times faster than CPU k-d tree approach in high dimensional situations [4].

Other than brute force implementations, GPU-based NNS with advanced
search structures are also available in the field of global illustration. In the con-
text of ray tracing, the NNS procedure builds trees with a different manner from
a triangle soup, and takes also triangles but not points as the objects of interest.



GPU-accelerated Nearest Neighbor Search for 3D Registration 3

These algorithms cannot be used as general point-based NNS algorithms. On
the other hand, the NNS algorithm for photon mapping shares a similar model
with a general point-based NNS problem. Foley built a k-d tree on CPU and
used the GPU to accelerate the search procedure [3]. Horn et al. extended Fo-
ley’s work by restarting the search at half of the tree but not from the root [5].
Singh presented an SIMD photon mapping framework, using stack based k-d
tree traverse to search k nearest neighbors [13]. Lieberman et al. used quad-tree
for the similarity joint algorithm [8]. Zhou et al. implemented k-d tree based
NNS on GPU for both ray tracing and photon mapping, using the CPU as a
coordinator [15]. He applied a heuristic function to construct k-d trees. In the
k-d tree traverse stage, range searching is used to find the k nearest neighbors.

In recent GPU-accelerated NNS implementations, most NNS kernels are
based on brute force methods. They are easy to implement but possess the nat-
ural drawback of low efficiency compared with advanced data structures. On the
other hand, brute force methods mostly need reduction kernels in order to find
the minimum in distance. A reduction kernel is slow due to its non-parallel na-
ture, even implemented by highly optimized blocks. Tree-based NNS algorithms
have shown a performance leap in global illumination. Hints and inspirations
can be gained from these algorithms. Therefore the purpose for which they were
designed makes them not easily adoptable for non-graphics purposes.

3 Massively Parallel Nearest Neighbor Search

The NNS problem can be stated as follows: Given a point set S and a query
point q in metric space M , the problem is to optimize the process of finding
the point p ∈ S, which has the smallest Euclidean distance to q. Our massively
parallel nearest neighbor search algorithm, GPU-NNS, is implemented on the
CUDA architecture. Instead of using the brute force and linear search method,
we use a space partitioning structure, k-d tree, to improve the search process.
In the following, the terms host and device refer CPU and GPU respectively.

3.1 GPU-NNS

Next we describe our GPU-NNS procedure which features three steps.

Array-based k-d Tree. Before the search procedure, a piece of page-locked mem-
ory is allocated on the host side. A left-balanced k-d tree is built for S by split-
ting the space always on the median of the longest axis. Being left-balanced,
the k-d tree can be serialized into a flat array, and thus stored in the page-
locked memory [7]. Since the device memory cannot be dynamically allocated,
the array-based k-d tree is downloaded to the device before NNS stage. It is
worth mentioning that in order to satisfy the coalescing of CUDA global mem-
ory, a Structure of Array (SoA) is used.



4 Deyuan Qiu et al.

Priority Search Method. Because recursion is not possible with CUDA, the tra-
ditional k-d tree search method cannot be used. However, the priority search
method provides a way to put NNS on the GPU [1]. Priority queues are main-
tained by the registers in the GPU. The priority search algorithm iteratively
executes the follow three steps: (1) Extract the element with the minimal dis-
tance to the query point from the queue. (2) Expand the extracted node, insert
the higher node in the queue and then expand the lower node. The step is re-
peated till the leaf node. (3) Update the nearest neighbor so far. The complete
GPU-NNS algorithm is shown in Algorithm 1.

Algorithm 1 GPU-NNS Algorithm

Require: download the k-d tree, model point cloud and scene point cloud to GPU
global memory.

1: assign n threads, where n = number of query points.
2: assign arrays pair[n] and distance[n] in GPU memory for results.
3: for every query point in parallel, do

4: assign the query point to a thread
5: allocate a dynamic list for the thread
6: construct dynamic queue q

7: Initialize q with the root node
8: do priority search, find: pair with shortest distance d

9: if d < distance threshold then

10: pair[threadID] = pair

11: distance[threadID] = d

12: else

13: pair[threadID] = non-pair flag
14: distance[threadID] = 0
15: end if

16: end for

Single-element Priority Queue. Registers are scarce resources in GPU hardware,
i.e., the more threads are launched at a time, the less registers can be assigned
to each. If the space is unevenly partitioned (e.g., in a point cloud of real scene),
a k-d tree based NNS routine performs frequently backtracking to find the real
nearest neighbor. In this case, a long queue has to be maintained for each search
thread. Such long queues are either not affordable by GPU registers or not desir-
able in terms of a long search time. In our approach, early termination is achieved
by fixing the length of the queues. The insertion of nodes is ignored when the
queues are filled. It is observed from experiments that single-element queues
also result in valid search. With single-element queues, the process needs fewer
steps, especially extractions to find the minimum. A 3D registration experiment
in section 4 shows that a GPU-NNS with a single-element queue performs valid
matching while consuming less time. In [9] a series of evaluations is presented
stating that approximation does not significantly deteriorate the quality of 3D
registration using approximate nearest neighbors in an ICP framework.



GPU-accelerated Nearest Neighbor Search for 3D Registration 5

Fig. 1: The pie chart depicts the timing of different stages of one ICP iteration
with two point clouds of 68229 points. In the standard sequential CPU implemen-
tation, the tree is constructed using the sliding midpoint splitting rule of ANN
library, with a bucket size of 1. The tree is searched by an approximate nearest
neighbor search method, with maximal visited points of 50. Matrix calculation,
i.e., the singular value decomposition (SVD) for the closed form minimization of
the ICP error function is implemented by NewMat library.

3.2 GPU-based 3D Registration

The ICP algorithm is a standard algorithm of 3D registration [6]. The algorithm
iterates over three steps: (1) Find point correspondences by the nearest neighbor
criteria. (2) Estimate the transformation using a mean square error function. (3)
Transform the points. Terminate if an error criterion is fulfilled, otherwise go
back to (1). Fig. 1 shows the runtime of different stages of a standard sequential
CPU-based ICP algorithm in which NNS consumes the majority of the time. The
proposed approach accelerates not only the NNS stage but also the remaining
parts of the ICP algorithm, namely the transformation, alignment and covariance
matrix calculation. Fig. 2 illustrates the coordination between the host and the
device of the GPU-ICP algorithm.

In our implementation, a stepwise reduction of the search radius is applied to
refine the iterations. The model point cloud is stored in the texture buffer, not
global memory, since they are cached in multiprocessors. Matrix operations are
performed by employing the CUBLAS library (CUDA implementation of basic
linear algebra methods). Counting the number of valid pairs is implemented with
the compact method of CUDPP (CUDA Data Parallel Primitives Library). The
block size is configured to be 192 or 256 to get the optimal compromise of enough
active threads and enough registers per multi-processor.

4 Experiments and Results

We analyze the results of the GPU-ICP algorithm and compare its performance
with that of the OpenMP-based ICP algorithm run on an Intel R© CoreTM2
Duo 6600 CPU. The GPU-ICP algorithm is performed on a nVidia GeForce
GTX280 R© GPU.



6 Deyuan Qiu et al.

Fig. 2: The coordination between CPU and GPU in the GPU-ICP algorithm.
Notice that other than constructing the k-d tree, CPU does only negligible work.
The data transfer over the PCIe is minimized. Pictures of the chips are taken
from manufacturer websites.

Experiment 1 – Registering two 3D Scans. The 3D scan registration experiment
is based on two partially overlapping 3D point clouds captured by a SICK laser
scanner in an office-like indoor environment as shown in Fig. 3. Both of the
scans have 68229 points. Other than the OpenMP-based ICP algorithm, the
performance of GPU-ICP is also compared with a sequential CPU-based ICP
(the same implementation as the one of Fig. 1), which uses a single CPU and
sets the maximal visited points to 50 as an early termination condition.

The convergence test on GPU-ICP with different queue lengths is presented in
Fig. 4 (a). The convergence, which represents the matching quality, is measured
by variation. Variation is defined by root mean squared error of the distances
between nearest neighbors. The root operation is eliminated in implementation.
It is observed that although the executions with different queue lengths perform
at different convergence speeds at the beginning, they all converge to a similar
variation limit, so as the one with a single-element queue. Figure 4(b) shows the
time consumed by different queue length configurations, as well as the two CPU
implementations. When registering 68229 points, GPU-ICP with single-element
queues performs more than 88 times faster than the standard sequential CPU
implementation. Fig. 5 compares the matching results between GPU-ICP and
CPU based ICP. Notice that the purple is the blend of the red and the blue when
point clouds are aligned. GPU-ICP with single-element priority queues performs
similar matching results in shorter time. Fig. 6 compares the speed of the three



GPU-accelerated Nearest Neighbor Search for 3D Registration 7

Fig. 3: The experimental scene, where the point clouds are captured. (a) An
office-like indoor environment. (b) The point cloud captured in the environment,
displayed in fake depth color.

0

0.002

0.004

0.006

0.008

0.010

0.012

0 50 100 150 200

D
e
v
ia

ti
o
n
(m

2
)

Number of Iterations

Sequential CPU-ICP
1
2
4
8

(a) Convergence test. (b) Speed test.

Fig. 4: The result of the 3D registration experiment of 68229 points. 1-6 means
the queue length is increased gradually in iterations as follows: 1, 2, 3, 4, 5, 6,
and 1-32 as: 1, 2, 4, 8, 16, 32. It is observed from the speed test that GPU-ICP
is 88 times faster than the sequential CPU-based ICP.

implementations: standard CPU-based ICP, OpenMP-based ICP and GPU-
ICP. When registering 68229 points, OpenMP multi-threading on a dual core
machine achieves a speedup of around 3 compared to the sequential execution,
while a speedup of 88 is achieved by GPU implementation. It is observed that
with more points, the speedup ratio of GPU-ICP to CPU implementations is
improved. Data (68229×2 points which amount to around 7 MB) are transfered
to the GPU only once in an ICP process, which take less than 3 milliseconds if
the GPU is connected by PCIe 2.0.

The same experiment is also tested on a contemporary system, which has an
Intel R© CoreTM i7-965 Extreme Edition CPU and a GeForce GTX 295 GPU.
All experimental settings are the same as above. The results are in Table 1.



8 Deyuan Qiu et al.

Fig. 5: Top view of the matched point clouds. Model point cloud is in red, scene in
green, and transformed scene in blue. (a) Matching result of standard sequential
CPU-ICP. (b) Matching result of GPU-ICP with single-element priority queue.

0

5000

10000

15000

20000

25000

30000

0 20000 40000 60000 80000

P
ro

c
e
ss

in
g

ti
m

e
(m

s)

Number of Points

Sequential CPU-ICP
OpenMP-based ICP

GPU-ICP

(a) Without kd-tree construction

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 20000 40000 60000 80000

P
ro

c
e
ss

in
g

ti
m

e
[m

s]

Number of Points

OpenMP-based ICP
GPU-ICP

(b) Including kd-tree construction

Fig. 6: The runtime comparison among sequential CPU implementation,
OpenMP-based implementation and GPU-ICP.

Table 1: Testing results of three ICP methods on a contemporary system.

Sequential CPU-ICP OpenMP-based ICP GPU-ICP

13140 ms 2800 ms 260 ms

Experiment 2 – Indoor 3D Mapping. The proposed GPU-ICP algorithm is ap-
plied to an indoor mapping task. 180 frames are captured by an SR3000 Swiss
Ranger Camera R©, with resolution of 25344 points4. The mapping environment
and the result of GPU-ICP are shown in Fig. 7 and the mapping performance is
listed in Table 2. Total time includes file operation, data transfer and matching
process. 1-2-3-4-5-6 means the queue length increases during the iterations from

4 The data are taken from http://www.robotic.de/242/.



GPU-accelerated Nearest Neighbor Search for 3D Registration 9

1 to 6. Since the number of points in every frame is less than that of Experiment

1, the speedup ratio of GPU-ICP is somewhat less (see Fig. 6b).

(a) Experimental environment. (b) Mapping result of GPU-ICP.

Fig. 7: The mapping result is attained with increasing queue length from 1 to 6
and 130 iterations. Notice that the result is produced by the pure ICP process,
without any preprocessing or refinement.

Table 2: The runtime of the mapping experiments.

Queue Length Number of Iterations Total Time (s) ICP Time (s)

1 20 55.57 11.58
1 30 78.95 19.51
1 60 99.08 40.86
1 130 107.79 50.55

1-2-3-4-5-6 130 123.05 65.80
OpenMP-based ICP 130 463.78 454.30

5 Conclusion and Future Work

We developed a GPU-accelerated NNS approach that uses the k-d tree based
priority search method. The performance is enhanced significantly by the mas-
sive parallelism of the GPU SIMD architecture. The GPU-NNS is applied in
a 3D registration algorithm, GPU-ICP. When registering 68229 points, results
show that a performance increase of up to 88 times can be obtained using a
modern commercial video card. The resulting approach is meanwhile around 26
times faster than the MIMD-based ICP algorithm running on a dual-core CPU.
The acceleration ratio of GPU-ICP to CPU implementations is greater when
registering larger point clouds.

With the rapid development of GPU technology, the k-d tree construction
stage can be migrated to GPU, possibly using a breadth first, dynamic list based



10 Deyuan Qiu et al.

approach. In addition Nüchter et al. show that a larger bucket size improves NNS
performance [9]. GPU-NNS could also increase the points in every leaf node. As
for the GPU-ICP algorithm, more extensions can be implemented to make it a
fully-fledged 3D registration algorithm, such as global relaxation, frustum culling
and point reduction.

References

1. S. Arya and D. M.Mount. Algorithms for Fast Vector Quantization. In Proc. Data
Compression Conference, pages 381–390. IEEE Computer Society Press, 1993.

2. B. Bustos, O. Deussen, S. Hiller, and D. Keim. A Graphics Hardware Acceler-
ated Algorithm for Nearest Neighbor Search. In Proc. of the 6th Int. Conf. on
Computational Science, pages 196–199, May 2006.

3. T. Foley and J. Sugerman. KD-Tree Acceleration Structures for a GPU Raytracer.
In Graphics Hardware, pages 15–22, July 2005.

4. V. Garcia, E. Debreuve, and M. Barlaud. Fast k Nearest Neighbor Search using
GPU. In Proc. Comp. Vision and Pattern Recognition Workshops (CVPRW),
pages 1–6, June 2008.

5. D. R. Horn, J. Sugerman, M. Houston, and P. Hanrahan. Interactive k-D Tree
GPU Raytracing. In Proc. Symp. on Interactive 3D graphics and games, pages
167–174, April 2007.

6. P. J.Besl and N. D.McKay. A Method for Registration of 3-D Shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(2):239–256, Febru-
ary 1992.

7. H. W. Jensen. Realistic Image Synthesis Using Photon Mapping. AK Peters, July
2001.

8. M. D. Lieberman, J. Sankaranarayanan, and H. Samet. A Fast Similarity Join Al-
gorithm Using Graphics Processing Units. In Proc. of the 24th IEEE International
Conference on Data Engineering, pages 1111–1120, May 2008.

9. A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6D SLAM with Ap-
proximate Data Association. In Proc. of the 12th IEEE International Conference
on Advanced Robotics (ICAR), pages 242–249, July 2005.

10. nVidia. NVIDIA CUDA Compute Unified Device Architecture Programming Guide.
nVidia, version 2.0 edition, June 2008.

11. T. J. Purcell, C. Donner, M. Cammarano, H. W. Jensen, and P. Hanra-
han. Photon Mapping on Programmable Graphics Hardware. In M. Doggett,
W. Heidrich, W. Mark, and A. Schillin, editors, Proc. of the ACM SIG-
GRAPH/EUROGRAPHICS Conf. on Graphics Hardware, 2003.

12. T. Rozen, K. Boryczko, and W. Alda. GPU bucket sort algorithm with applications
to nearest-neighbour search. In Journal of the 16th Int. Conf. in Central Europe
on Computer Graphics, Visualization and Computer Vision, February 2008.

13. S. Singh and P. Faloutsos. SIMD Packet Techniques for Photon Mapping. In Proc.
of the IEEE/EG Symposium on Interactive Ray Tracing, pages 87–94, September
2007.

14. K. van Kooten, G. van den bergen, and A. Telea. GPU Gems 3, chapter 7, pages
123–148. Addison Wesley Professional, August 2007.

15. K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-Time KD-Tree Construction on
Graphics Hardware. In SIGGRAPH Asia 2008, page 10, April 2008.


