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Abstract

The ICP (Iterative Closest Point) algorithm is the
de facto standard for geometric alignment of three-
dimensional models when an initial relative pose estimate is
available. The basis of ICP is the search for closest points.
Since the development of ICP, k-d trees have been used to
accelerate the search. This paper presents a novel search
procedure, namely cached k-d trees, exploiting iterative be-
havior of the ICP algorithm. It results in a significant speed-
up of about 50% as we show in an evaluation using different
data sets.

1 Background

Registering 3D models is a crucial step in 3D model con-
struction. Many application benefit from efficient ICP algo-
rithms: Nowadays precise 3D scanners are available that are
used in architecture, industrial automation, agriculture, cul-
tural heritage conservation, and facility management. These
3D scanners deliver tons of 3D data as point clouds. Other
applications of point cloud registration algorithms include
medical data processing, art history, archaeology, and res-
cue and inspection robotics. The advent of 3D cameras is
likely to generate another burst of ICP applications in the
near future [22, 23].

ICP algorithms are widely used for registering geomet-
ric 3D models in a common coordinate system. Given two
point clouds and a starting guess for the relative poses, the
algorithm computes the rotation and translation such that
the 3D models fit together. ICP is an iterative algorithm
based on searching for closest points. The key of efficient
implementation is the fast computation of closest points.
This paper presents a novel search method, namely, cached
k-d trees, for computing of closest points iteratively. The
method is based on k-d trees and a buffer for leaf nodes. The
buffer is used to start backtracking in subsequent searches.
Therefore, the iterative structure of ICP is exploited for

speed-ups. The proposed search algorithm computes exact
nearest neighbors as closest point, thus side effects due to
approximation cannot occur.

The paper is organized as follows: The next part presents
briefly the ICP algorithm, followed by a discussion of re-
lated work. The following section describes the data struc-
tures used for closest point searches within the ICP algo-
rithm and introduces our novel approach. The obtained re-
sults are then evaluated. Section 4 concludes.

1.1 The ICP Algorithm

The ICP Algorithm was developed by Besl and McKay
[5] and is usually used to register two given point sets in a
common coordinate system. The algorithm calculates iter-
atively the registration. In each iteration step, the algorithm
selects the closest points as correspondences and calculates
the transformation, i.e., rotation and translation (R, t), for
minimizing the equation
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where N,,, and Ny, are the number of points in the model
set M and data set D, respectively, and w;; are the weights
for a point match. The weights are assigned as follows:
wj; = 1, if m, is the closest point to d;, w;; = 0 otherwise.
Eq. (1) can be reduced to

1 N
ﬂm>«ﬁgmr®mwﬁ<m

with N = S Vm Z;v:dl w; j, since the correspondence
matrix can be represented by a vector v containing
the point pairs, ie., v = ((di,myq,)), (d2, mgq,)),
-y (dny,mpay,))), with f(x) the search function re-
turning the closest point. The assumption is that in the last
iteration step the point correspondences, thus the vector of
point pairs, are correct.



In each ICP iteration, the transformation can be calcu-
lated by any of these four methods: A SVD based method
of Arun et al. [1], a quaternion method of Horn [12], an
algorithm using orthonormal matrices of Horn et al. [13]
and a calculation based on dual quaternions of Walker et
al. [24]. These algorithms show similar performance and
stability concerning noisy data [15].

Besl and McKay show that the iteration terminates in
a minimum [5]. Note: Normally, implementations of ICP
would use a maximal distance for closest points to handle
partially overlapping point sets. In this case the proof in [5]
does no longer hold, since the number of points as well as
the value of F(R,t) might increase after applying a trans-
formation.

1.2 State of the Art

Many variants of the ICP algorithm have been proposed
in recent years. Different strategies for point reduction,
i.e., point selection, matching and weighting have been pro-
posed and evaluated [20]. Rusinkiewicz and Levoy propose
a high speed ICP variant using a point-to-plane error met-
ric [16] and a projection-based method to generate point
correspondences [6]. Furthermore they conclude that the
other stages of the ICP process appear to have little effect
of convergence rate, so that they choose the simplest ones,
namely random sampling, constant weighting, and a dis-
tance threshold for rejecting point pairs [20].

ICP algorithms tend to have problems if too many points
are chosen from featureless regions of the data. In this
case the algorithm converges slowly, finds the wrong pose,
or even diverges. Normal space sampling, as proposed by
Rusinkiewicz and Levoy, aims at constraining translational
sliding of input meshes, generated from the point cloud
[20]. Their algorithm tries to ensure that the normals of the
selected points uniformly populate the sphere of directions.
Covariance sampling as proposed by Levoy et al. extends
the normal space approach. They identify whether a pair of
meshes will be unstable in the ICP algorithms by estimating
a covariance matrix from a sparse uniform sampling of the
input [8].

However, these state of the art ICP variants all assume
that the input data is given as a mesh. In many appli-
cation scenarios a mesh is not available, e.g., 3D data in
robotics. Here, measurements contain in addition to Gaus-
sian noise so called salt-and-pepper noise. Furthermore, in
robotics the scenes are often sparsely sampled by the sen-
sor. For these two reasons, simple meshing methods based
on the topology of the acquired points cannot be applied
and roboticists stick to using the raw point clouds. In this
case the point-to-point metric, cf. Eq. (1), and closest point
search have to be used. For computing closest points, k-
d trees [7] are the standard search structure (see section 2.1

for a detailed description of k-d trees). Simon et al. obtained
much speedup from a closest point cache that reduced the
number of necessary k-d tree lookups [21].

Improving the speed of ICP algorithms received much
attention recently. The developed wide variety of methods
aim to increase the performance of computing correspond-
ing points. Currently available methods include for example
exploiting the triangle equation [11, 9] and heuristics based
on multi resolution [14].

Recently, Greenspan and Yurick used approximate k-
d trees for ICP algorithms [10]. The idea behind this is to
return as an approximate nearest neighbor the closest point
in the bucket region where the query point lies. This value is
determined from the depth-first search only, thus expensive
ball-within-bounds tests and backtracking are not used [10].
Inspired by these ideas, the ICP algorithms has been evalu-
ated in [17] using the approximate nearest neighbor search
introduced by Arya et al. [2, 3]: k-d trees empirically out-
perform bd-trees (box decomposition trees) with and with-
out approximation. Approximation does not significantly
deteriorate the quality of scan registration, but significantly
increases the speed of scan matching [17].

The following section presents a novel method for com-
puting exact closest points for ICP. It combines k-d trees
with caching.

2 Closest Point Search

2.1 k-d trees

k-d trees are a generalization of binary search trees. Ev-
ery node represents a partition of a point set to the two suc-
cessor nodes. The root represents the whole point cloud
and the leaves provide a complete disjunct partition of the
points. These leaves are called buckets (cf. Fig. 2). Fur-
thermore, every node contains the limits of the represented
point set.

2.1.1 Searching k-d trees

k-d trees are searched recursively. A given 3D point needs
to be compared with the separating plane in order to decide
on which side the search must continue. This procedure is
executed until the leaves are reached. There, the algorithm
has to evaluate all bucket points. However, the closest point
may be in a different bucket, iff the distance to the limits is
smaller than the one to the closest point in the bucket. In
this case backtracking has to be performed. Fig. 2 shows
a backtracking case, where the algorithms has to go back
to the root. The test is known as ball-within-bounds test
[4,7,10].



Figure 1. Some test scenes used in this paper. Left: Typical cluttered indoor environment. Middle:
Outdoor environment with trees. Right: 3D face scans.
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Figure 2. Left: Recursive construction of a k-d tree. If the query consists of point p,, k-d tree search
has to backtrack to the tree root to find the closest point. Right: Partitioning of a point cloud.
Using the cut (b) rather than (a) results in a more compact partition and a smaller probability of
backtracking [7].



2.1.2 The optimized k-d tree

The objective of optimizing k-d trees is to reduce the ex-
pected number of visited leaves. Three parameters are ad-
justable, namely, the direction and position of the split axis
as well as the maximal number of points in the buckets.
Splitting the point set at the median ensures that every k-
d tree entry has the same probability [7]. The median can
be found in linear time, thus the time complexity for con-
structing the tree is not affected. Furthermore, the split axis
should be oriented perpendicular to the longest axis to min-
imize the amount of backtracking (see Fig. 2). Friedman
and colleagues prove that a bucket size of 1 is optimal [7].
Nevertheless, in practice it turned out that a slightly larger
bucket size is faster [11].

2.2 Approximate k-d tree search

S. Arya and D. Mount introduce the following notion for
approximating the nearest neighbor in k-d trees [2]: Given
an € > 0, then the point p € D is the (1 + ¢)-approximate
nearest neighbor of the point p, iff

P = pgll < (1 +2)|[p” = pall

where p* denotes the true nearest neighbor, i.e., p has a
maximal distance of ¢ to the true nearest neighbor. Using
this notation, in every step the algorithm records the closest
point p. The search terminates if the distance to the unana-
lyzed leaves is larger than

lpg =PIl /(1 +¢).

Fig. 3 (left) shows an example where the gray cell needs not
to be analyzed, since the point p satisfies the approximation
criterion.

2.3 Approximate box decomposition trees

Arya et al. have presented an algorithm for approximate
nearest neighbor search and proved its optimality [3]. They
use a balanced box decomposition tree (bd-tree) as their
primary data structure. This tree combines two important
properties of geometric data structures: First, as in the k-
d tree case, the set of points is exponentially reduced. Sec-
ond, the aspect ratio of the tree edges is bounded by a con-
stant. Not even the optimized k-d tree is able to make this
assurance, but quadtrees show this characteristic [3]. The
actual box decomposition search tree is composed of splits
and shrinks. Fig. 3 (c) shows the general structure.

The search procedure of bd-trees is similar to the one of
approximate k-d trees. The approximate search is discon-
tinued (cf. Fig. 3) if the distance to the unanalyzed leaves
is larger than

Ipg =PIl /(1 +¢).

2.4 Cached k-d tree search

2.4.1 The cached k-d tree search

k-d trees with caching contain, in addition to the limits of
the represented point set and to the two child node pointers,
one pointer to the predecessor node. The root node contains
a null pointer. During the recursive construction of the tree,
this information is available and no extra computations are
required.

For the ICP algorithm, we distinguish between the first
and the following iterations: In the first iteration, a normal
k-d tree search is used to compute the closest points. How-
ever, the return function of the tree is altered, such that in
addition to the closest point, the pointer to the leaf contain-
ing the closest point is returned and stored in the vector
of point pairs. This supplementary information forms the
cache for future look-ups.

In the following iterations, these stored pointers are used
to start the search. If the query point is located in the bucket,
the bucket is searched and the ball-within-bounds test ap-
plied. Backtracking is started, iff the ball lies not com-
pletely within the bucket. If the query point is not located
within the bucket, then backtracking is started, too. Since
the search is started in the leaf node, explicit backtracking
through the tree has to be implemented using the pointers
to the predecessor nodes (see Fig. 4). Algorithm 1 summa-
rizes the ICP with cached k-d tree search.

Algorithm 1 ICP with cached k-d tree search
1: for ¢ = 0 to maxlterations do
2:  if 7 == 0 then
3 foralld; € D do
4 search k-d tree of set M top down for point d;
5: v, = (dj, mf(dj),ptr,to,bucket(mf(dj)))
6: end for
7
8
9

else
foralld; € D do
search k-d tree of set M bottom up for point d;
using ptr_to_bucket(mygq;))

10: vj = (dj, my(q,), ptr-to-bucket myq;))
11: end for
122 endif

13:  calculate transformation (R, t) that minimizes the er-
ror function Eq. (2)

14:  apply transformation on data set D

15: end for

2.4.2 Performance of cached k-d tree search

The proposed ICP variant uses exact closest point search.
In contrast to the previously discussed approximate k-d tree
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Figure 3. Left: The (1 + ¢)-approximate nearest neighbor. The solid circle denotes the < environment
of p,. The search algorithm need not analyze the gray cell, since p satisfies the approximation
criterion. Middle and right: (a) Given point set. (b) decomposition into buckets. (c) Tree layout. Fig.

adapted from [2, 3].
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Figure 4. Schematic description of the proposed search method: Instead of closest point searching
from the root of the tree to the leaves that contain the data points, a pointer to the leaves is cached.
In the second and following ICP iteration, the tree is searched backwards.



search for ICP algorithms [10, 17], registration inaccuracies
or errors due to approximation cannot occur.

Friedman et al. prove that searching for closest points us-
ing k-d trees needs logarithmic time [7], i.e., the amount of
backtracking is independent of the number of stored points
in the tree. Since the ICP algorithm iterates the closest point
search, the performance derives to O(INglog N, ), with I
the number of iterations. Note: Brute-force ICP algorithms
have a performance of O(INyN,,).

The proposed cached k-d tree search needs O((I +
log N;,,)Ng) time in the best case. This performance is
reached if constant time is needed for backtracking, result-
ing in Ny log IV, time for constructing the tree, and I - Ny
for searching in case no backtracking is necessary. Obvi-
ously the backtracking time depends on the computed ICP
transformation (R, t). For small transformations the time is
nearly constant.

Cached k-d tree search needs O(INy) extra memory for
the vector v, i.e., for storing the pointers to the tree leaves.
Furthermore, additional O(N,,,) memory is needed for stor-
ing the backwards pointers in the k-d tree.

3 Evaluation and Results

The proposed method has been evaluated with 5 data sets
from different domains. The computation was done on a
Pentium-IV with 2.8 GHz running Linux OS, with the same
compiler options, i.e., with gcc —02. Since k-d tree search
and cached k-d tree search are very similar, most parts of
the code were identical in the comparison experiments. In
all tests, ICP with cached k-d tree search outperformed ICP
with conventional k-d tree search. Next, the detailed results
on one particular data set are described and explained. Then
we summarize the the results from the data sets.

The data set “cluttered indoor environment” was
recorded during the Rescue Robotics Camp 2004 with a 3D
laser range finder that is built on basis of a SICK scanner.
A servo motor is used to achieve a controlled pitch motion
of the 2D scanner. Such 3D scanners are commonly used in
robotics. Four detailed analyses are provided:

1. The performance of the cached k-d tree search depend-
ing on a change of the bucket size was tested: For
small bucket sizes, the speed-up is larger (Fig. 5, top
left). This behavior originates from the increasing time
needed to search larger buckets.

2. The search time per iteration was recorded during the
experiments (Fig. 5, top right). For the first iteration
the search times are equal, since cached k-d tree search
uses conventional k-d tree search to create the cache.
In the following iterations, the search time drops sig-
nificantly and remains nearly constant. The conven-
tional k-d tree search increases in speed, too. Here,

the amount of backtracking is reduced due to the fact
that the calculated transformations (R, t) are getting
smaller.

3. The number of points to register influences the search
time. With increasing number of points, the positive
effect of caching algorithms becomes more and more
significant (Fig. 5, bottom left).

4. The overall performance of the ICP algorithm depends
both on the search time and on the construction time
of the tree. However, the construction time of the trees
seems to be negligible. In addition, a comparison with
a reference implementation shows the effective imple-
mentation. As reference implementation the software
from the papers [2, 3] was used (Fig. 5, bottom right).

In addition to the detailed analysis, a number of experi-
ments with different data sets have been made. Table 1 sum-
marizes the results on different data sets originating from
various ICP applications. Overall, a speedup in the order of
50% percent is achieved. The speedup on a point set with
random points is lower, since more cache misses occur. The
reason for this effect is that ICP aligns scans using their lo-
cal structures or clusters. The cache exploits the data con-
glomeration, too, but it is not present in the random point
set.

4 Conclusion

In this paper we present a simple search method that im-
proves k-d tree search for ICP algorithms for point clouds.
The algorithm exploits the iterative fashion of the ICP
by caching pointers to tree buckets containing the clos-
est points. Since the transformations in each step become
smaller from iteration to iteration, the number of tree oper-
ations is drastically reduced. The resulting ICP variant is
usually about 50% faster than the conventional k-d tree ICP
algorithm.

Needless to say, a lot of work remains to be done. In
future work we plan to develop an algorithm suite that con-
tain implementations of Elias’ algorithm [19], search meth-
ods that include the exploitation of the triangle equation [9]
and other caching methods, e.g. [21]. Such a framework is
necessary to allow an unbiased evaluation.

Furthermore, we are currently working on global reg-
istration methods for several 3D point clouds. Here, the
ICP error function is replaced by a global error function,
that moves all scans in the minimization step. New search
methods are needed, since after applying the transforma-
tion, the (cached or approximate) k-d trees have to be time-
consumingly altered or reconstructed.



Table 1. Computation times for ICP based scan registration using standard -d tree search vs. cached
k-d tree search. The test set differ in size and registration of scans is applied repeatedly to construct
a complete model. lllustrations of parts of the first two and last data sets are given in Fig. 1.

Name of the data set | standard k-d tree search | cached k-d tree search | speedup |

Cluttered indoor environment 29345 ms 12959 ms 56%
Outdoor environment 521 sec 311 sec 41%
Abandoned mine 1112 ms 532 ms 52%
Rescue arena 4378 ms 2159 ms 51%
Facial scans 32 sec 13 sec 59%
Random point set 3556 ms 2521 ms 29%
cached kd-tree vs. kd-tree search time per iteration
80000 3000
—e—cached kd-tree, bs=10
speed-up 59% [ cached kd-tree 2500
A/ B kd-tree \ - - @& - -cached kd-tree, bs=25
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2 o y e
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= =1000
E £
20000 - 500
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Figure 5. Detailed results for the data set “cluttered indoor environment”. Top Left: search time vs.
bucket size. Top right: search time per iteration for bucket sizes 10 and 25. Bottom left: Search
time depending on the number of points. Bottom right: Overall comparison of the algorithms and a
reference k-d tree implementation [2, 3].
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