/* This is a Optical-Character-Recognition program Copyright (C) 2000-2006 Joerg Schulenburg This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. Joerg.Schulenburg@physik.uni-magdeburg.de */ /* Filter by tree, filter by number methods added by * William Webber, william@williamwebber.com. */ #include "pgm2asc.h" #include #include /* * Defining this causes assert() calls to be turned off runtime. * * This is normally taken care of by make. */ /* #define NDEBUG */ // ------------------ (&~7)-pixmap-functions ------------------------ /* test if pixel marked? * Returns: 0 if not marked, least 3 bits if marked. */ int marked (pix * p, int x, int y) { if (x < 0 || y < 0 || x >= p->x || y >= p->y) return 0; return (pixel_atp(p, x, y) & 7); } #define Nfilt3 6 /* number of 3x3 filter */ /* * Filters to correct possible scanning or image errors. * * Each of these filters represents a 3x3 pixel area. * 0 represents a white or background pixel, 1 a black or * foreground pixel, and 2 represents a pixel of either value. * Note that this differs from the meaning of pixel values in * the image, where a high value means "white" (background), * and a low value means "black" (foreground). * * These filters are applied to the 3x3 environment of a pixel * to be retrieved from the image, centered around that pixel * (that is, the to-be-retrieved pixel corresponds with the * the fifth position of the filter). * If the filter matches that pixel environment, then * the returned value of the pixel is inverted (black->white * or white->black). * * So, for instance, the second filter below matches this * pattern: * * 000 * X0X * 000 * * and "fills in" the middle (retrieved) pixel to rejoin a line * that may have been broken by a scanning or image error. */ const char filt3[Nfilt3][9]={ {0,0,0, 0,0,1, 1,0,0}, /* (-1,-1) (0,-1) (1,-1) (-1,0) (0,0) ... */ {0,0,0, 1,0,1, 0,0,0}, {1,0,0, 0,0,1, 0,0,0}, {1,1,0, 0,1,0, 2,1,1}, {0,0,1, 0,0,0, 2,1,0}, {0,1,0, 0,0,0, 1,2,0} }; /* 2=ignore_pixel, 0=white_background, 1=black_pixel */ /* * Filter by matrix uses the above matrix of filters directly. Pixel * environments to be filtered are compared pixel by pixel against * these filters. * * Filter by number converts these filters into integer representations * and stores them in a table. Pixel environments are similarly * converted to integers, and looked up in the table. * * Filter by tree converts these filters into a binary tree. Pixel * environments are matched by traversing the tree. * * A typical performance ratio for these three methods is 20:9:7 * respectively (i.e., the tree method takes around 35% of the * time of the matrix method). */ #define FILTER_BY_MATRIX 0 #define FILTER_BY_NUMBER 1 #define FILTER_BY_TREE 2 #define FILTER_METHOD FILTER_BY_TREE /* * Defining FILTER_CHECKED causes filter results from either the tree * or the number method to be checked against results of the other * two methods to ensure correctness. This is for bug checking purposes * only. */ /* #define FILTER_CHECKED */ /* * Defining FILTER_STATISTICS causes statistics to be kept on how many * times the filters are tried, how many times a filter matches, and * of these matches how many flip a black pixel to white, and how many * the reverse. These statistics are printed to stderr at the end of * the program run. Currently, statistics are only kept if the tree * filter method is being used. */ /* #define FILTER_STATISTICS */ #ifdef FILTER_STATISTICS static int filter_tries = 0; static int filter_matches = 0; static int filter_blackened = 0; static int filter_whitened = 0; #endif #ifdef FILTER_STATISTICS void print_filter_stats() { fprintf(stderr, "\n# Error filter statistics: tries %d, matches %d, " "blackened %d, whitened %d\n", filter_tries, filter_matches, filter_blackened, filter_whitened); } #endif #if FILTER_METHOD == FILTER_BY_MATRIX || defined(FILTER_CHECKED) /* * Filter the pixel at (x,y) by directly applying the matrix. */ int pixel_filter_by_matrix(pix * p, int x, int y) { int i; static char c33[9]; memset(c33, 0, sizeof(c33)); /* copy environment of a point (only highest bit) bbg: FASTER now. It has 4 ifs less at least, 8 at most. */ if (x > 0) { c33[3] = pixel_atp(p,x-1, y )>>7; if (y > 0) c33[0] = pixel_atp(p,x-1,y-1)>>7; if (y+1 < p->y) c33[6] = pixel_atp(p,x-1,y+1)>>7; } if (x+1 < p->x) { c33[5] = pixel_atp(p,x+1, y )>>7; if (y > 0) c33[2] = pixel_atp(p,x+1,y-1)>>7; if (y+1 < p->y) c33[8] = pixel_atp(p,x+1,y+1)>>7; } if (y > 0) c33[1] = pixel_atp(p, x ,y-1)>>7; c33[4] = pixel_atp(p, x , y )>>7; if (y+1 < p->y) c33[7] = pixel_atp(p, x ,y+1)>>7; /* do filtering */ for (i = 0; i < Nfilt3; i++) if( ( (filt3[i][0]>>1) || c33[0]!=(1 & filt3[i][0]) ) && ( (filt3[i][1]>>1) || c33[1]!=(1 & filt3[i][1]) ) && ( (filt3[i][2]>>1) || c33[2]!=(1 & filt3[i][2]) ) && ( (filt3[i][3]>>1) || c33[3]!=(1 & filt3[i][3]) ) && ( (filt3[i][4]>>1) || c33[4]!=(1 & filt3[i][4]) ) && ( (filt3[i][5]>>1) || c33[5]!=(1 & filt3[i][5]) ) && ( (filt3[i][6]>>1) || c33[6]!=(1 & filt3[i][6]) ) && ( (filt3[i][7]>>1) || c33[7]!=(1 & filt3[i][7]) ) && ( (filt3[i][8]>>1) || c33[8]!=(1 & filt3[i][8]) ) ) { return ((filt3[i][4])?JOB->cfg.cs:0); } return pixel_atp(p, x, y) & ~7; } #endif #if FILTER_METHOD == FILTER_BY_NUMBER || defined(FILTER_CHECKED) #define NUM_TABLE_SIZE 512 /* max value of 9-bit value */ /* * Recursively generates entries in the number table for a matrix filter. * * gen_num_filt is the number representation of the matrix filter. * This generation is handled recursively because this is the easiest * way to handle 2 (either value) entries in the filter, which lead * to 2 distinct entries in the number table (one for each alternate * value). */ void rec_generate_number_table(char * num_table, const char * filter, int i, unsigned short gen_num_filt) { if (i == 9) { /* Invert the value of the number representation, to reflect the * fact that the "white" is 0 in the filter, 1 (high) in the image. */ gen_num_filt = ~gen_num_filt; gen_num_filt &= 0x01ff; assert(gen_num_filt < NUM_TABLE_SIZE); num_table[gen_num_filt] = 1; } else { if (filter[i] == 0 || filter[i] == 2) rec_generate_number_table(num_table, filter, i + 1, gen_num_filt); if (filter[i] == 1 || filter[i] == 2) { gen_num_filt |= (1 << (8 - i)); rec_generate_number_table(num_table, filter, i + 1, gen_num_filt); } } } /* * Filter the pixel at (x, y) using a number table. * * Each filter can be converted into a 9-bit representation, where * filters containing 2 (either value) pixels are converted into * a separate numerical representation for each pixel, where position * i in the filter corresponds to bit i in the number. Each resulting * numerical representation N is represented as a 1 value in the Nth * position of a lookup table. A pixel's environment is converted in * the same way to a numeric representation P, and that environment * matches a filter if num_table[P] == 1. */ int pixel_filter_by_number(pix * p, int x, int y) { unsigned short val = 0; static char num_table[NUM_TABLE_SIZE]; static int num_table_generated = 0; if (!num_table_generated) { int f; memset(num_table, 0, sizeof(num_table)); for (f = 0; f < Nfilt3; f++) rec_generate_number_table(num_table, filt3[f], 0, 0); num_table_generated = 1; } /* calculate a numeric value for the 3x3 square around the pixel. */ if (x > 0) { val |= (pixel_atp(p,x-1, y )>>7) << (8 - 3); if (y > 0) val |= (pixel_atp(p,x-1,y-1)>>7) << (8 - 0); if (y+1 < p->y) val |= (pixel_atp(p,x-1,y+1)>>7) << (8 - 6); } if (x+1 < p->x) { val |= (pixel_atp(p,x+1, y )>>7) << (8 - 5); if (y > 0) val |= (pixel_atp(p,x+1,y-1)>>7) << (8 - 2); if (y+1 < p->y) val |= (pixel_atp(p,x+1,y+1)>>7) << (8 - 8); } if (y > 0) val |= (pixel_atp(p, x ,y-1)>>7) << (8 - 1); val |= (pixel_atp(p, x , y )>>7) << (8 - 4); if (y+1 < p->y) val |= (pixel_atp(p, x ,y+1)>>7) << (8 - 7); assert(val < NUM_TABLE_SIZE); if (num_table[val]) return (val & (1 << 4)) ? 0 : JOB->cfg.cs; else return pixel_atp(p, x, y) & ~7; } #endif #if FILTER_METHOD == FILTER_BY_TREE || defined(FILTER_CHECKED) #define TREE_ARRAY_SIZE 1024 /* 1+ number of nodes in a complete binary tree of height 10 */ /* * Recursively generate a tree representation of a filter. */ void rec_generate_tree(char * tree, const char * filter, int i, int n) { assert(i >= 0 && i <= 9); assert(n < TREE_ARRAY_SIZE); if (i == 9) { if (filter[4] == 0) tree[n] = 2; else tree[n] = 1; return; } /* first iteration has n == -1, does not set any values of the tree, just to find whether to start to the left or the right */ if (n != -1) tree[n] = 1; if (filter[i] == 0) rec_generate_tree(tree, filter, i + 1, n * 2 + 2); else if (filter[i] == 1) rec_generate_tree(tree, filter, i + 1, n * 2 + 3); else { rec_generate_tree(tree, filter, i + 1, n * 2 + 2); rec_generate_tree(tree, filter, i + 1, n * 2 + 3); } } /* * Filter the pixel at (x, y) using the tree method. * * Each filter is represented by a single branch of a binary * tree, except for filters contain "either value" entries, which * bifurcate at that point in the branch. Each white pixel in the filter * is a left branch in the tree, each black pixel a right branch. The * final node of a branch indicates whether this filter turns a white * pixel black, or a black one white. * * We match a pixel's environment against this tree by similarly * using the pixels in that environment to traverse the tree. If * we run out of nodes before getting to the end of a branch, then * the environment doesn't match against any of the filters represented * by the tree. Otherwise, we return the value specified by the * final node. * * Since the total tree size, even including missing nodes, is small * (2 ^ 10), we can use a standard array representation of a binary * tree, where for the node tree[n], the left child is tree[2n + 2], * and the right tree[2n + 3]. The only information we want * from a non-leaf node is whether it exists (that is, is part of * a filter-representing branch). We represent this with the value * 1 at the node's slot in the array, the contrary by 0. For the * leaf node, 0 again represents non-existence, 1 that the filter * represented by this branch turns a black pixel white, and 2 a * white pixel black. */ int pixel_filter_by_tree(pix * p, int x, int y) { static char tree[TREE_ARRAY_SIZE]; static int tree_generated = 0; int n; int pixel_val = pixel_atp(p, x, y) & ~7; #ifdef FILTER_STATISTICS static int registered_filter_stats = 0; if (!registered_filter_stats) { atexit(print_filter_stats); registered_filter_stats = 1; } filter_tries++; #endif /* FILTER_STATISTICS */ if (!tree_generated) { int f; memset(tree, 0, sizeof(tree)); for (f = 0; f < Nfilt3; f++) { const char * filter = filt3[f]; rec_generate_tree(tree, filter, 0, -1); } tree_generated = 1; } n = -1; /* Note that for the image, low is black, high is white, whereas * for the filter, 0 is white, 1 is black. For the image, then, * high (white) means go left, low (black) means go right. */ #define IS_BLACK(_dx,_dy) !(pixel_atp(p, x + (_dx), y + (_dy)) >> 7) #define IS_WHITE(_dx,_dy) (pixel_atp(p, x + (_dx), y + (_dy)) >> 7) #define GO_LEFT n = n * 2 + 2 #define GO_RIGHT n = n * 2 + 3 #define CHECK_NO_MATCH if (tree[n] == 0) return pixel_val /* Top row */ if (y == 0) { /* top 3 pixels off edge == black == right n = 2 * (2 * (2 * -1 + 3) + 3) + 3 = 13 */ n = 13; } else { if (x == 0 || IS_BLACK(-1, -1)) GO_RIGHT; else GO_LEFT; if (IS_WHITE(0, -1)) GO_LEFT; else GO_RIGHT; CHECK_NO_MATCH; if (x + 1 == p->x || IS_BLACK(+1, -1)) GO_RIGHT; else GO_LEFT; CHECK_NO_MATCH; } /* Second row */ if (x == 0 || IS_BLACK(-1, 0)) GO_RIGHT; else GO_LEFT; CHECK_NO_MATCH; if (IS_WHITE(0, 0)) GO_LEFT; else GO_RIGHT; CHECK_NO_MATCH; if (x + 1 == p->x || IS_BLACK(+1, 0)) GO_RIGHT; else GO_LEFT; CHECK_NO_MATCH; /* bottom row */ if (y + 1 == p->y) { /* bottom 3 pixels off edge == black == right n' = 2 * (2 * (2n + 3) + 3) + 3 = 2 * (4n + 9) + 3 = 8n + 21 */ n = 8 * n + 21; } else { if (x == 0 || IS_BLACK(-1, +1)) GO_RIGHT; else GO_LEFT; CHECK_NO_MATCH; if (IS_WHITE(0, 1)) GO_LEFT; else GO_RIGHT; CHECK_NO_MATCH; if (x + 1 == p->x || IS_BLACK(+1, +1)) GO_RIGHT; else GO_LEFT; } assert(n < TREE_ARRAY_SIZE); assert(tree[n] == 0 || tree[n] == 1 || tree[n] == 2); CHECK_NO_MATCH; #ifdef FILTER_STATISTICS filter_matches++; #endif if (tree[n] == 1) { #ifdef FILTER_STATISTICS if (pixel_atp(p, x, y) < JOB->cfg.cs) filter_whitened++; #endif return JOB->cfg.cs; } else { #ifdef FILTER_STATISTICS if (pixel_atp(p, x, y) >= JOB->cfg.cs) filter_blackened++; #endif return 0; } } #endif /* FILTER_METHOD == FILTER_BY_TREE */ /* * This simple filter attempts to correct "fax"-like scan errors. */ int pixel_faxfilter(pix *p, int x, int y) { int r; // filter r = pixel_atp(p,x,y)&~7; /* {2,2,2, 2,0,1, 2,1,0} */ if ((r&128) && (~pixel_atp(p,x+1, y )&128) && (~pixel_atp(p, x ,y+1)&128) && ( pixel_atp(p,x+1,y+1)&128)) r = 64; /* faxfilter */ else /* {2,2,2, 1,0,2, 0,1,2} */ if ((r&128) && (~pixel_atp(p,x-1, y )&128) && (~pixel_atp(p, x ,y+1)&128) && ( pixel_atp(p,x-1,y+1)&128)) r = 64; /* faxfilter */ return r & ~7; } #ifdef FILTER_CHECKED /* * Print out the 3x3 environment of a pixel as a 9-bit binary. * * For debugging purposes only. */ void print_pixel_env(FILE * out, pix * p, int x, int y) { int x0, y0; for (y0 = y - 1; y0 < y + 2; y0++) { for (x0 = x - 1; x0 < x + 2; x0++) { if (x0 < 0 || x0 >= p->x || y0 < 0 || y0 >= p->y) fputc('?', out); else if (pixel_atp(p, x0, y0) >> 7) fputc('0', out); else fputc('1', out); } } } #endif /* this function is heavily used * test if pixel was set, remove low bits (marks) --- later with error-correction * result depends on n_run, if n_run>0 filter are used * Returns: pixel-color (without marks) */ int getpixel(pix *p, int x, int y){ if ( x < 0 || y < 0 || x >= p->x || y >= p->y ) return 255 & ~7; /* filter will be used only once later, when vectorization replaces pixel * processing */ if (JOB->tmp.n_run > 0) { /* use the filters (correction of errors) */ #if FILTER_METHOD == FILTER_BY_NUMBER int pix = pixel_filter_by_number(p, x, y); #ifdef FILTER_CHECKED int pix2 = pixel_filter_by_matrix(p, x, y); if (pix != pix2) { fprintf(stderr, "# BUG: pixel_filter: by number: %d; by matrix: %d, " "by atp %d; env: ", pix, pix2, pixel_atp(p, x, y) & ~7); print_pixel_env(stderr, p, x, y); fputc('\n', stderr); } #endif /* FILTER_CHECKED */ return pix; #elif FILTER_METHOD == FILTER_BY_MATRIX return pixel_filter_by_matrix(p, x, y); #elif FILTER_METHOD == FILTER_BY_TREE int pix = pixel_filter_by_tree(p, x, y); #ifdef FILTER_CHECKED int pix2 = pixel_filter_by_matrix(p, x, y); int pix3 = pixel_filter_by_number(p, x, y); if (pix != pix2 || pix != pix3) { fprintf(stderr, "# BUG: pixel_filter: tree: %d; matrix: %d, " "number: %d, atp %d; env: ", pix, pix2, pix3, pixel_atp(p, x, y) & ~7); print_pixel_env(stderr, p, x, y); fputc('\n', stderr); } #endif /* FILTER_CHECKED */ return pix; #else #error FILTER_METHOD not defined #endif /* FILTER_BY_NUMBER */ } return (pixel_atp(p,x,y) & ~7); } /* modify pixel, test if out of range */ void put(pix * p, int x, int y, int ia, int io) { if (x < p->x && x >= 0 && y >= 0 && y < p->y) pixel_atp(p, x, y) = (pixel_atp(p, x, y) & ia) | io; }