200 lines
5.4 KiB
C++
200 lines
5.4 KiB
C++
|
|
//#define WANT_STREAM
|
|
|
|
|
|
#include "include.h"
|
|
#include "newmat.h"
|
|
|
|
#include "tmt.h"
|
|
|
|
#ifdef use_namespace
|
|
using namespace NEWMAT;
|
|
#endif
|
|
|
|
|
|
|
|
|
|
void trymatc()
|
|
{
|
|
// cout << "\nTwelfth test of Matrix package\n";
|
|
Tracer et("Twelfth test of Matrix package");
|
|
Tracer::PrintTrace();
|
|
DiagonalMatrix D(15); D=1.5;
|
|
Matrix A(15,15);
|
|
int i,j;
|
|
for (i=1;i<=15;i++) for (j=1;j<=15;j++) A(i,j)=i*i+j-150;
|
|
{ A = A + D; }
|
|
ColumnVector B(15);
|
|
for (i=1;i<=15;i++) B(i)=i+i*i-150.0;
|
|
{
|
|
Tracer et1("Stage 1");
|
|
ColumnVector B1=B;
|
|
B=(A*2.0).i() * B1;
|
|
Matrix X = A*B-B1/2.0;
|
|
Clean(X, 0.000000001); Print(X);
|
|
A.ReSize(3,5);
|
|
for (i=1; i<=3; i++) for (j=1; j<=5; j++) A(i,j) = i+100*j;
|
|
|
|
B = A.AsColumn()+10000;
|
|
RowVector R = (A+10000).AsColumn().t();
|
|
Print( RowVector(R-B.t()) );
|
|
}
|
|
|
|
{
|
|
Tracer et1("Stage 2");
|
|
B = A.AsColumn()+10000;
|
|
Matrix XR = (A+10000).AsMatrix(15,1).t();
|
|
Print( RowVector(XR-B.t()) );
|
|
}
|
|
|
|
{
|
|
Tracer et1("Stage 3");
|
|
B = (A.AsMatrix(15,1)+A.AsColumn())/2.0+10000;
|
|
Matrix MR = (A+10000).AsColumn().t();
|
|
Print( RowVector(MR-B.t()) );
|
|
|
|
B = (A.AsMatrix(15,1)+A.AsColumn())/2.0;
|
|
MR = A.AsColumn().t();
|
|
Print( RowVector(MR-B.t()) );
|
|
}
|
|
|
|
{
|
|
Tracer et1("Stage 4");
|
|
B = (A.AsMatrix(15,1)+A.AsColumn())/2.0;
|
|
RowVector R = A.AsColumn().t();
|
|
Print( RowVector(R-B.t()) );
|
|
}
|
|
|
|
{
|
|
Tracer et1("Stage 5");
|
|
RowVector R = (A.AsColumn()-5000).t();
|
|
B = ((R.t()+10000) - A.AsColumn())-5000;
|
|
Print( RowVector(B.t()) );
|
|
}
|
|
|
|
{
|
|
Tracer et1("Stage 6");
|
|
B = A.AsColumn(); ColumnVector B1 = (A+10000).AsColumn() - 10000;
|
|
Print(ColumnVector(B1-B));
|
|
}
|
|
|
|
{
|
|
Tracer et1("Stage 7");
|
|
Matrix X = B.AsMatrix(3,5); Print(Matrix(X-A));
|
|
for (i=1; i<=3; i++) for (j=1; j<=5; j++) B(5*(i-1)+j) -= i+100*j;
|
|
Print(B);
|
|
}
|
|
|
|
{
|
|
Tracer et1("Stage 8");
|
|
A.ReSize(7,7); D.ReSize(7);
|
|
for (i=1; i<=7; i++) for (j=1; j<=7; j++) A(i,j) = i*j*j;
|
|
for (i=1; i<=7; i++) D(i,i) = i;
|
|
UpperTriangularMatrix U; U << A;
|
|
Matrix X = A; for (i=1; i<=7; i++) X(i,i) = i;
|
|
A.Inject(D); Print(Matrix(X-A));
|
|
X = U; U.Inject(D); A = U; for (i=1; i<=7; i++) X(i,i) = i;
|
|
Print(Matrix(X-A));
|
|
}
|
|
|
|
{
|
|
Tracer et1("Stage 9");
|
|
A.ReSize(7,5);
|
|
for (i=1; i<=7; i++) for (j=1; j<=5; j++) A(i,j) = i+100*j;
|
|
Matrix Y = A; Y = Y - ((const Matrix&)A); Print(Y);
|
|
Matrix X = A; // X.Release();
|
|
Y = A; Y = ((const Matrix&)X) - A; Print(Y); Y = 0.0;
|
|
Y = ((const Matrix&)X) - ((const Matrix&)A); Print(Y);
|
|
}
|
|
|
|
{
|
|
Tracer et1("Stage 10");
|
|
// some tests on submatrices
|
|
UpperTriangularMatrix U(20);
|
|
for (i=1; i<=20; i++) for (j=i; j<=20; j++) U(i,j)=100 * i + j;
|
|
UpperTriangularMatrix V = U.SymSubMatrix(1,5);
|
|
UpperTriangularMatrix U1 = U;
|
|
U1.SubMatrix(4,8,5,9) /= 2;
|
|
U1.SubMatrix(4,8,5,9) += 388 * V;
|
|
U1.SubMatrix(4,8,5,9) *= 2;
|
|
U1.SubMatrix(4,8,5,9) += V;
|
|
U1 -= U; UpperTriangularMatrix U2 = U1;
|
|
U1 << U1.SubMatrix(4,8,5,9);
|
|
U2.SubMatrix(4,8,5,9) -= U1; Print(U2);
|
|
U1 -= (777*V); Print(U1);
|
|
|
|
U1 = U; U1.SubMatrix(4,8,5,9) -= U.SymSubMatrix(1,5);
|
|
U1 -= U; U2 = U1; U1 << U1.SubMatrix(4,8,5,9);
|
|
U2.SubMatrix(4,8,5,9) -= U1; Print(U2);
|
|
U1 += V; Print(U1);
|
|
|
|
U1 = U;
|
|
U1.SubMatrix(3,10,15,19) += 29;
|
|
U1 -= U;
|
|
Matrix X = U1.SubMatrix(3,10,15,19); X -= 29; Print(X);
|
|
U1.SubMatrix(3,10,15,19) *= 0; Print(U1);
|
|
|
|
LowerTriangularMatrix L = U.t();
|
|
LowerTriangularMatrix M = L.SymSubMatrix(1,5);
|
|
LowerTriangularMatrix L1 = L;
|
|
L1.SubMatrix(5,9,4,8) /= 2;
|
|
L1.SubMatrix(5,9,4,8) += 388 * M;
|
|
L1.SubMatrix(5,9,4,8) *= 2;
|
|
L1.SubMatrix(5,9,4,8) += M;
|
|
L1 -= L; LowerTriangularMatrix L2 = L1;
|
|
L1 << L1.SubMatrix(5,9,4,8);
|
|
L2.SubMatrix(5,9,4,8) -= L1; Print(L2);
|
|
L1 -= (777*M); Print(L1);
|
|
|
|
L1 = L; L1.SubMatrix(5,9,4,8) -= L.SymSubMatrix(1,5);
|
|
L1 -= L; L2 =L1; L1 << L1.SubMatrix(5,9,4,8);
|
|
L2.SubMatrix(5,9,4,8) -= L1; Print(L2);
|
|
L1 += M; Print(L1);
|
|
|
|
L1 = L;
|
|
L1.SubMatrix(15,19,3,10) -= 29;
|
|
L1 -= L;
|
|
X = L1.SubMatrix(15,19,3,10); X += 29; Print(X);
|
|
L1.SubMatrix(15,19,3,10) *= 0; Print(L1);
|
|
}
|
|
|
|
{
|
|
Tracer et1("Stage 11");
|
|
// more tests on submatrices
|
|
Matrix M(20,30);
|
|
for (i=1; i<=20; i++) for (j=1; j<=30; j++) M(i,j)=100 * i + j;
|
|
Matrix M1 = M;
|
|
|
|
for (j=1; j<=30; j++)
|
|
{ ColumnVector CV = 3 * M1.Column(j); M.Column(j) += CV; }
|
|
for (i=1; i<=20; i++)
|
|
{ RowVector RV = 5 * M1.Row(i); M.Row(i) -= RV; }
|
|
|
|
M += M1; Print(M);
|
|
|
|
}
|
|
|
|
{
|
|
Tracer et1("Stage 12");
|
|
// more tests on Release
|
|
Matrix M(20,30);
|
|
for (i=1; i<=20; i++) for (j=1; j<=30; j++) M(i,j)=100 * i + j;
|
|
Matrix M1 = M;
|
|
M.Release();
|
|
Matrix M2 = M;
|
|
Matrix X = M; Print(X);
|
|
X = M1 - M2; Print(X);
|
|
|
|
#ifndef DONT_DO_NRIC
|
|
nricMatrix N = M1;
|
|
nricMatrix N1 = N;
|
|
N.Release();
|
|
nricMatrix N2 = N;
|
|
nricMatrix Y = N; Print(Y);
|
|
Y = N1 - N2; Print(Y);
|
|
#endif
|
|
|
|
}
|
|
|
|
// cout << "\nEnd of twelfth test\n";
|
|
}
|