3dpcp/.svn/pristine/03/03e93122e00a079ccfe0c961b905bceeccf41725.svn-base
2012-09-16 14:33:11 +02:00

287 lines
9.3 KiB
Text

//#define WANT_STREAM
#include "include.h"
#include "newmat.h"
#include "tmt.h"
#ifdef use_namespace
using namespace NEWMAT;
#endif
/**************************** test program ******************************/
void trymat2()
{
// cout << "\nSecond test of Matrix package\n\n";
Tracer et("Second test of Matrix package");
Tracer::PrintTrace();
int i,j;
Matrix M(3,5);
for (i=1; i<=3; i++) for (j=1; j<=5; j++) M(i,j) = 100*i + j;
Matrix X(8,10);
for (i=1; i<=8; i++) for (j=1; j<=10; j++) X(i,j) = 1000*i + 10*j;
Matrix Y = X; Matrix Z = X;
{ X.SubMatrix(2,4,3,7) << M; }
for (i=1; i<=3; i++) for (j=1; j<=5; j++) Y(i+1,j+2) = 100*i + j;
Print(Matrix(X-Y));
Real a[15]; Real* r = a;
for (i=1; i<=3; i++) for (j=1; j<=5; j++) *r++ = 100*i + j;
{ Z.SubMatrix(2,4,3,7) << a; }
Print(Matrix(Z-Y));
{ M=33; X.SubMatrix(2,4,3,7) << M; }
{ Z.SubMatrix(2,4,3,7) = 33; }
Print(Matrix(Z-X));
for (i=1; i<=8; i++) for (j=1; j<=10; j++) X(i,j) = 1000*i + 10*j;
Y = X;
UpperTriangularMatrix U(5);
for (i=1; i<=5; i++) for (j=i; j<=5; j++) U(i,j) = 100*i + j;
{ X.SubMatrix(3,7,5,9) << U; }
for (i=1; i<=5; i++) for (j=i; j<=5; j++) Y(i+2,j+4) = 100*i + j;
for (i=1; i<=5; i++) for (j=1; j<i; j++) Y(i+2,j+4) = 0.0;
Print(Matrix(X-Y));
for (i=1; i<=8; i++) for (j=1; j<=10; j++) X(i,j) = 1000*i + 10*j;
Y = X;
for (i=1; i<=5; i++) for (j=i; j<=5; j++) U(i,j) = 100*i + j;
{ X.SubMatrix(3,7,5,9).Inject(U); }
for (i=1; i<=5; i++) for (j=i; j<=5; j++) Y(i+2,j+4) = 100*i + j;
Print(Matrix(X-Y));
// test growing and shrinking a vector
{
ColumnVector V(100);
for (i=1;i<=100;i++) V(i) = i*i+i;
V = V.Rows(1,50); // to get first 50 vlaues.
{
V.Release(); ColumnVector VX=V;
V.ReSize(100); V = 0.0; V.Rows(1,50)=VX;
} // V now length 100
M=V; M=100; // to make sure V will hold its values
for (i=1;i<=50;i++) V(i) -= i*i+i;
Print(V);
// test redimensioning vectors with two dimensions given
ColumnVector CV1(10); CV1 = 10;
ColumnVector CV2(5); CV2.ReSize(10,1); CV2 = 10;
V = CV1-CV2; Print(V);
RowVector RV1(20); RV1 = 100;
RowVector RV2; RV2.ReSize(1,20); RV2 = 100;
V = (RV1-RV2).t(); Print(V);
X.ReSize(4,7);
for (i=1; i<=4; i++) for (j=1; j<=7; j++) X(i,j) = 1000*i + 10*j;
Y = 10.5 * X;
Z = 7.25 - Y;
M = Z + X * 10.5 - 7.25;
Print(M);
Y = 2.5 * X;
Z = 9.25 + Y;
M = Z - X * 2.5 - 9.25;
Print(M);
U.ReSize(8);
for (i=1; i<=8; i++) for (j=i; j<=8; j++) U(i,j) = 100*i + j;
Y = 100 - U;
M = Y + U - 100;
Print(M);
}
{
SymmetricMatrix S,T;
S << (U + U.t());
T = 100 - S; M = T + S - 100; Print(M);
T = 100 - 2 * S; M = T + S * 2 - 100; Print(M);
X = 100 - 2 * S; M = X + S * 2 - 100; Print(M);
T = S; T = 100 - T; M = T + S - 100; Print(M);
}
// test new
{
ColumnVector CV1; RowVector RV1;
Matrix* MX; MX = new Matrix; if (!MX) Throw(Bad_alloc("New fails "));
MX->ReSize(10,20);
for (i = 1; i <= 10; i++) for (j = 1; j <= 20; j++)
(*MX)(i,j) = 100 * i + j;
ColumnVector* CV = new ColumnVector(10);
if (!CV) Throw(Bad_alloc("New fails "));
*CV << 1 << 2 << 3 << 4 << 5 << 6 << 7 << 8 << 9 << 10;
RowVector* RV = new RowVector(CV->t() | (*CV + 10).t());
if (!RV) Throw(Bad_alloc("New fails "));
CV1 = ColumnVector(10); CV1 = 1; RV1 = RowVector(20); RV1 = 1;
*MX -= 100 * *CV * RV1 + CV1 * *RV;
Print(*MX);
delete MX; delete CV; delete RV;
}
// test copying of vectors and matrices with no elements
{
ColumnVector dims(16);
Matrix M1; Matrix M2 = M1; Print(M2);
dims(1) = M2.Nrows(); dims(2) = M2.Ncols();
dims(3) = (Real)(unsigned long)M2.Store(); dims(4) = M2.Storage();
M2 = M1;
dims(5) = M2.Nrows(); dims(6) = M2.Ncols();
dims(7) = (Real)(unsigned long)M2.Store(); dims(8) = M2.Storage();
M2.ReSize(10,20); M2.CleanUp();
dims(9) = M2.Nrows(); dims(10) = M2.Ncols();
dims(11) = (Real)(unsigned long)M2.Store(); dims(12) = M2.Storage();
M2.ReSize(20,10); M2.ReSize(0,0);
dims(13) = M2.Nrows(); dims(14) = M2.Ncols();
dims(15) = (Real)(unsigned long)M2.Store(); dims(16) = M2.Storage();
Print(dims);
}
{
ColumnVector dims(16);
ColumnVector M1; ColumnVector M2 = M1; Print(M2);
dims(1) = M2.Nrows(); dims(2) = M2.Ncols()-1;
dims(3) = (Real)(unsigned long)M2.Store(); dims(4) = M2.Storage();
M2 = M1;
dims(5) = M2.Nrows(); dims(6) = M2.Ncols()-1;
dims(7) = (Real)(unsigned long)M2.Store(); dims(8) = M2.Storage();
M2.ReSize(10); M2.CleanUp();
dims(9) = M2.Nrows(); dims(10) = M2.Ncols()-1;
dims(11) = (Real)(unsigned long)M2.Store(); dims(12) = M2.Storage();
M2.ReSize(10); M2.ReSize(0);
dims(13) = M2.Nrows(); dims(14) = M2.Ncols()-1;
dims(15) = (Real)(unsigned long)M2.Store(); dims(16) = M2.Storage();
Print(dims);
}
{
ColumnVector dims(16);
RowVector M1; RowVector M2 = M1; Print(M2);
dims(1) = M2.Nrows()-1; dims(2) = M2.Ncols();
dims(3) = (Real)(unsigned long)M2.Store(); dims(4) = M2.Storage();
M2 = M1;
dims(5) = M2.Nrows()-1; dims(6) = M2.Ncols();
dims(7) = (Real)(unsigned long)M2.Store(); dims(8) = M2.Storage();
M2.ReSize(10); M2.CleanUp();
dims(9) = M2.Nrows()-1; dims(10) = M2.Ncols();
dims(11) = (Real)(unsigned long)M2.Store(); dims(12) = M2.Storage();
M2.ReSize(10); M2.ReSize(0);
dims(13) = M2.Nrows()-1; dims(14) = M2.Ncols();
dims(15) = (Real)(unsigned long)M2.Store(); dims(16) = M2.Storage();
Print(dims);
}
// test identity matrix
{
Matrix M;
IdentityMatrix I(10); DiagonalMatrix D(10); D = 1;
M = I; M -= D; Print(M);
D -= I; Print(D);
ColumnVector X(8);
D = 1;
X(1) = Sum(D) - Sum(I);
X(2) = SumAbsoluteValue(D) - SumAbsoluteValue(I);
X(3) = SumSquare(D) - SumSquare(I);
X(4) = Trace(D) - Trace(I);
X(5) = Maximum(D) - Maximum(I);
X(6) = Minimum(D) - Minimum(I);
X(7) = LogDeterminant(D).LogValue() - LogDeterminant(I).LogValue();
X(8) = LogDeterminant(D).Sign() - LogDeterminant(I).Sign();
Clean(X,0.00000001); Print(X);
for (i = 1; i <= 10; i++) for (j = 1; j <= 10; j++)
M(i,j) = 100 * i + j;
Matrix N;
N = M * I - M; Print(N);
N = I * M - M; Print(N);
N = M * I.i() - M; Print(N);
N = I.i() * M - M; Print(N);
N = I.i(); N -= I; Print(N);
N = I.t(); N -= I; Print(N);
N = I.t(); N += (-I); Print(N); // <----------------
D = I; N = D; D = 1; N -= D; Print(N);
N = I; D = 1; N -= D; Print(N);
N = M + 2 * IdentityMatrix(10); N -= (M + 2 * D); Print(N);
I *= 4;
D = 4;
X.ReSize(14);
X(1) = Sum(D) - Sum(I);
X(2) = SumAbsoluteValue(D) - SumAbsoluteValue(I);
X(3) = SumSquare(D) - SumSquare(I);
X(4) = Trace(D) - Trace(I);
X(5) = Maximum(D) - Maximum(I);
X(6) = Minimum(D) - Minimum(I);
X(7) = LogDeterminant(D).LogValue() - LogDeterminant(I).LogValue(); // <--
X(8) = LogDeterminant(D).Sign() - LogDeterminant(I).Sign();
int i,j;
X(9) = I.Maximum1(i) - 4; X(10) = i-1;
X(11) = I.Maximum2(i,j) - 4; X(12) = i-10; X(13) = j-10;
X(14) = I.Nrows() - 10;
Clean(X,0.00000001); Print(X);
N = D.i();
N += I / (-16);
Print(N);
N = M * I - 4 * M; Print(N);
N = I * M - 4 * M; Print(N);
N = M * I.i() - 0.25 * M; Print(N);
N = I.i() * M - 0.25 * M; Print(N);
N = I.i(); N -= I * 0.0625; Print(N);
N = I.i(); N = N - 0.0625 * I; Print(N);
N = I.t(); N -= I; Print(N);
D = I * 2; N = D; D = 1; N -= 8 * D; Print(N);
N = I * 2; N -= 8 * D; Print(N);
N = 0.5 * I + M; N -= M; N -= 2.0 * D; Print(N);
IdentityMatrix J(10); J = 8;
D = 4;
DiagonalMatrix E(10); E = 8;
N = (I + J) - (D + E); Print(N);
N = (5*I + 3*J) - (5*D + 3*E); Print(N);
N = (-I + J) - (-D + E); Print(N);
N = (I - J) - (D - E); Print(N);
N = (I | J) - (D | E); Print(N);
N = (I & J) - (D & E); Print(N);
N = SP(I,J) - SP(D,E); Print(N);
N = D.SubMatrix(2,5,3,8) - I.SubMatrix(2,5,3,8); Print(N);
N = M; N.Inject(I); D << M; N -= (M + I); N += D; Print(N);
D = 4;
IdentityMatrix K = I.i()*7 - J.t()/4;
N = D.i() * 7 - E / 4 - K; Print(N);
K = I * J; N = K - D * E; Print(N);
N = I * J; N -= D * E; Print(N);
K = 5*I - 3*J;
N = K - (5*D - 3*E); Print(N);
K = I.i(); N = K - 0.0625 * I; Print(N);
K = I.t(); N = K - I; Print(N);
K.ReSize(20); D.ReSize(20); D = 1;
D -= K; Print(D);
I.ReSize(3); J.ReSize(3); K = I * J; N = K - I; Print(N);
K << D; N = K - D; Print(N);
}
// cout << "\nEnd of second test\n";
}