137 lines
3.4 KiB
Text
137 lines
3.4 KiB
Text
/** @file
|
|
* @brief Representation of the optimized k-d tree. MetaScan variant.
|
|
* @author Andreas Nuechter. Institute of Computer Science, University of Osnabrueck, Germany.
|
|
* @author Kai Lingemann. Institute of Computer Science, University of Osnabrueck, Germany.
|
|
* @author Thomas Escher
|
|
*/
|
|
|
|
#ifndef __KD_META_H__
|
|
#define __KD_META_H__
|
|
|
|
#include "kdparams.h"
|
|
#include "searchTree.h"
|
|
#include "data_types.h"
|
|
|
|
#include <boost/thread/mutex.hpp>
|
|
#include <boost/thread/locks.hpp>
|
|
|
|
#ifdef _MSC_VER
|
|
#if !defined _OPENMP && defined OPENMP
|
|
#define _OPENMP
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef _OPENMP
|
|
#include <omp.h>
|
|
#endif
|
|
|
|
|
|
|
|
class Scan;
|
|
|
|
|
|
|
|
/**
|
|
* @brief The optimized k-d tree.
|
|
*
|
|
* A kD tree for points, with limited
|
|
* capabilities (find nearest point to
|
|
* a given point, or to a ray).
|
|
**/
|
|
class KDtreeMeta : public SearchTree {
|
|
protected:
|
|
class Index {
|
|
public:
|
|
unsigned int s, i;
|
|
inline void set(unsigned int _s, unsigned int _i) { s = _s; i = _i; }
|
|
};
|
|
public:
|
|
KDtreeMeta();
|
|
virtual ~KDtreeMeta();
|
|
|
|
void create(const DataXYZ* const* pts, Index* indices, unsigned int n);
|
|
|
|
virtual double *FindClosest(double *_p, double maxdist2, int threadNum = 0) const { return 0; }
|
|
|
|
protected:
|
|
/**
|
|
* storing the parameters of the k-d tree, i.e., the current closest point,
|
|
* the distance to the current closest point and the point itself.
|
|
* These global variable are needed in this search.
|
|
*
|
|
* Padded in the parallel case.
|
|
*/
|
|
#ifdef _OPENMP
|
|
#ifdef __INTEL_COMPILER
|
|
__declspec (align(16)) static KDParams params[MAX_OPENMP_NUM_THREADS];
|
|
#else
|
|
static KDParams params[MAX_OPENMP_NUM_THREADS];
|
|
#endif //__INTEL_COMPILER
|
|
#else
|
|
static KDParams params[MAX_OPENMP_NUM_THREADS];
|
|
#endif
|
|
|
|
/**
|
|
* number of points. If this is 0: intermediate node. If nonzero: leaf.
|
|
*/
|
|
int npts;
|
|
|
|
/**
|
|
* Cue the standard rant about anon unions but not structs in C++
|
|
*/
|
|
union {
|
|
/**
|
|
* in case of internal node...
|
|
*/
|
|
struct {
|
|
double center[3]; ///< storing the center of the voxel (R^3)
|
|
double dx, ///< defining the voxel itself
|
|
dy, ///< defining the voxel itself
|
|
dz, ///< defining the voxel itself
|
|
r2; ///< defining the voxel itself
|
|
int splitaxis; ///< defining the kind of splitaxis
|
|
KDtreeMeta *child1; ///< pointers to the childs
|
|
KDtreeMeta *child2; ///< pointers to the childs
|
|
} node;
|
|
/**
|
|
* in case of leaf node ...
|
|
*/
|
|
struct {
|
|
//! Content is an array of indices to be put into the dynamically aquired data array
|
|
Index* p;
|
|
} leaf;
|
|
};
|
|
|
|
inline double* point(const DataXYZ* const* pts, const Index& i) const {
|
|
return (*pts[i.s])[i.i];
|
|
}
|
|
|
|
void _FindClosest(const DataXYZ* const* pts, int threadNum) const;
|
|
};
|
|
|
|
class KDtreeMetaManaged : public KDtreeMeta {
|
|
public:
|
|
KDtreeMetaManaged(const vector<Scan*>& scans);
|
|
virtual ~KDtreeMetaManaged();
|
|
|
|
virtual void lock();
|
|
virtual void unlock();
|
|
|
|
//! Aquires cached data first to pass on to the usual KDtree to process
|
|
virtual double* FindClosest(double *_p, double maxdist2, int threadNum = 0) const;
|
|
private:
|
|
Scan** m_scans;
|
|
DataXYZ** m_data;
|
|
unsigned int m_size;
|
|
|
|
//! Mutex for safely reducing points just once in a multithreaded environment
|
|
boost::mutex m_mutex_locking;
|
|
volatile unsigned int m_count_locking;
|
|
|
|
// constructor initializer list hacks
|
|
Index* m_temp_indices;
|
|
Index* prepareTempIndices(const vector<Scan*>& scans);
|
|
unsigned int getPointsSize(const vector<Scan*>& scans);
|
|
};
|
|
|
|
#endif
|