126 lines
3.7 KiB
Text
126 lines
3.7 KiB
Text
|
|
//#define WANT_STREAM
|
|
|
|
|
|
#include "include.h"
|
|
|
|
#include "newmatap.h"
|
|
|
|
#include "tmt.h"
|
|
|
|
#ifdef use_namespace
|
|
using namespace NEWMAT;
|
|
#endif
|
|
|
|
|
|
/**************************** test program ******************************/
|
|
|
|
|
|
static void process(const GeneralMatrix& A,
|
|
const ColumnVector& X1, const ColumnVector& X2)
|
|
{
|
|
Matrix B = A;
|
|
LinearEquationSolver L(A);
|
|
Matrix Y(4,2);
|
|
Y.Column(1) << L.i() * X1; Y.Column(2) << L.i() * X2;
|
|
Matrix Z(4,2); Z.Column(1) << X1; Z.Column(2) << X2;
|
|
Z = B * Y - Z; Clean(Z,0.00000001); Print(Z);
|
|
}
|
|
|
|
|
|
|
|
void trymata()
|
|
{
|
|
// cout << "\nTenth test of Matrix package\n";
|
|
Tracer et("Tenth test of Matrix package");
|
|
Tracer::PrintTrace();
|
|
int i; int j;
|
|
UpperTriangularMatrix U(8);
|
|
for (i=1;i<=8;i++) for (j=i;j<=8;j++) U(i,j)=i+j*j+5;
|
|
Matrix X(8,6);
|
|
for (i=1;i<=8;i++) for (j=1;j<=6;j++) X(i,j)=i*j+1.0;
|
|
Matrix Y = U.i()*X; Matrix MU=U;
|
|
Y=Y-MU.i()*X; Clean(Y,0.00000001); Print(Y);
|
|
Y = U.t().i()*X; Y=Y-MU.t().i()*X; Clean(Y,0.00000001); Print(Y);
|
|
UpperTriangularMatrix UX(8);
|
|
for (i=1;i<=8;i++) for (j=i;j<=8;j++) UX(i,j)=i+j+1;
|
|
UX(4,4)=0; UX(4,5)=0;
|
|
UpperTriangularMatrix UY = U.i() * UX;
|
|
{ X=UX; MU=U; Y=UY-MU.i()*X; Clean(Y,0.000000001); Print(Y); }
|
|
LowerTriangularMatrix LY = U.t().i() * UX.t();
|
|
{ Y=LY-MU.i().t()*X.t(); Clean(Y,0.000000001); Print(Y); }
|
|
DiagonalMatrix D(8); for (i=1;i<=8;i++) D(i,i)=i+1;
|
|
{ X=D.i()*MU; }
|
|
{ UY=U; UY=D.i()*UY; Y=UY-X; Clean(Y,0.00000001); Print(Y); }
|
|
{ UY=D.i()*U; Y=UY-X; Clean(Y,0.00000001); Print(Y); }
|
|
// X=MU.t();
|
|
// LY=D.i()*U.t(); Y=D*LY-X; Clean(Y,0.00000001); Print(Y);
|
|
// LowerTriangularMatrix L=U.t();
|
|
// LY=D.i()*L; Y=D*LY-X; Clean(Y,0.00000001); Print(Y);
|
|
U.ReSize(8);
|
|
for (i=1;i<=8;i++) for (j=i;j<=8;j++) U(i,j)=i+j*j+5;
|
|
MU = U;
|
|
MU = U.i() - MU.i(); Clean(MU,0.00000001); Print(MU);
|
|
MU = U.t().i() - U.i().t(); Clean(MU,0.00000001); Print(MU);
|
|
|
|
// test LINEQ
|
|
{
|
|
ColumnVector X1(4), X2(4);
|
|
X1(1)=1; X1(2)=2; X1(3)=3; X1(4)=4;
|
|
X2(1)=1; X2(2)=10; X2(3)=100; X2(4)=1000;
|
|
|
|
|
|
Matrix A(4,4);
|
|
A(1,1)=1; A(1,2)=3; A(1,3)=0; A(1,4)=0;
|
|
A(2,1)=3; A(2,2)=2; A(2,3)=5; A(2,4)=0;
|
|
A(3,1)=0; A(3,2)=5; A(3,3)=4; A(3,4)=1;
|
|
A(4,1)=0; A(4,2)=0; A(4,3)=1; A(4,4)=3;
|
|
process(A,X1,X2);
|
|
|
|
BandMatrix B(4,1,1); B.Inject(A);
|
|
process(B,X1,X2);
|
|
|
|
UpperTriangularMatrix U(4);
|
|
U(1,1)=1; U(1,2)=2; U(1,3)=3; U(1,4)=4;
|
|
U(2,2)=8; U(2,3)=7; U(2,4)=6;
|
|
U(3,3)=2; U(3,4)=7;
|
|
U(4,4)=1;
|
|
process(U,X1,X2);
|
|
|
|
// check rowwise load
|
|
UpperTriangularMatrix U1(4);
|
|
U1.Row(1) << 1 << 2 << 3 << 4;
|
|
U1.Row(2) << 8 << 7 << 6;
|
|
U1.Row(3) << 2 << 7;
|
|
U1.Row(4) << 1;
|
|
|
|
U1 -= U;
|
|
|
|
Print(U1);
|
|
|
|
LowerTriangularMatrix L = U.t();
|
|
process(L,X1,X2);
|
|
}
|
|
|
|
// test inversion of poorly conditioned matrix
|
|
// a user complained this didn't work under OS9
|
|
{
|
|
Matrix M(4,4);
|
|
|
|
M << 8.613057e+00 << 8.693985e+00 << -2.322050e-01 << 0.000000e+00
|
|
<< 8.693985e+00 << 8.793868e+00 << -2.346310e-01 << 0.000000e+00
|
|
<< -2.322050e-01 << -2.346310e-01 << 6.264000e-03 << 0.000000e+00
|
|
<< 0.000000e+00 << 0.000000e+00 << 0.000000e+00 << 3.282806e+03 ;
|
|
Matrix MI = M.i();
|
|
DiagonalMatrix I(4); I = 1;
|
|
Matrix Diff = MI * M - I;
|
|
Clean(Diff,0.00000001); Print(Diff);
|
|
// Alternatively do Cholesky
|
|
SymmetricMatrix SM; SM << M;
|
|
LowerTriangularMatrix LT = Cholesky(SM).i();
|
|
MI = LT.t() * LT; Diff = MI * M - I;
|
|
Clean(Diff,0.00000001); Print(Diff);
|
|
}
|
|
|
|
// cout << "\nEnd of tenth test\n";
|
|
}
|