3dpcp/.svn/pristine/56/5616d822bf4258da2301e267a8cd78e96ff37897.svn-base
2012-09-16 14:33:11 +02:00

126 lines
3.7 KiB
Text

//#define WANT_STREAM
#include "include.h"
#include "newmatap.h"
#include "tmt.h"
#ifdef use_namespace
using namespace NEWMAT;
#endif
/**************************** test program ******************************/
static void process(const GeneralMatrix& A,
const ColumnVector& X1, const ColumnVector& X2)
{
Matrix B = A;
LinearEquationSolver L(A);
Matrix Y(4,2);
Y.Column(1) << L.i() * X1; Y.Column(2) << L.i() * X2;
Matrix Z(4,2); Z.Column(1) << X1; Z.Column(2) << X2;
Z = B * Y - Z; Clean(Z,0.00000001); Print(Z);
}
void trymata()
{
// cout << "\nTenth test of Matrix package\n";
Tracer et("Tenth test of Matrix package");
Tracer::PrintTrace();
int i; int j;
UpperTriangularMatrix U(8);
for (i=1;i<=8;i++) for (j=i;j<=8;j++) U(i,j)=i+j*j+5;
Matrix X(8,6);
for (i=1;i<=8;i++) for (j=1;j<=6;j++) X(i,j)=i*j+1.0;
Matrix Y = U.i()*X; Matrix MU=U;
Y=Y-MU.i()*X; Clean(Y,0.00000001); Print(Y);
Y = U.t().i()*X; Y=Y-MU.t().i()*X; Clean(Y,0.00000001); Print(Y);
UpperTriangularMatrix UX(8);
for (i=1;i<=8;i++) for (j=i;j<=8;j++) UX(i,j)=i+j+1;
UX(4,4)=0; UX(4,5)=0;
UpperTriangularMatrix UY = U.i() * UX;
{ X=UX; MU=U; Y=UY-MU.i()*X; Clean(Y,0.000000001); Print(Y); }
LowerTriangularMatrix LY = U.t().i() * UX.t();
{ Y=LY-MU.i().t()*X.t(); Clean(Y,0.000000001); Print(Y); }
DiagonalMatrix D(8); for (i=1;i<=8;i++) D(i,i)=i+1;
{ X=D.i()*MU; }
{ UY=U; UY=D.i()*UY; Y=UY-X; Clean(Y,0.00000001); Print(Y); }
{ UY=D.i()*U; Y=UY-X; Clean(Y,0.00000001); Print(Y); }
// X=MU.t();
// LY=D.i()*U.t(); Y=D*LY-X; Clean(Y,0.00000001); Print(Y);
// LowerTriangularMatrix L=U.t();
// LY=D.i()*L; Y=D*LY-X; Clean(Y,0.00000001); Print(Y);
U.ReSize(8);
for (i=1;i<=8;i++) for (j=i;j<=8;j++) U(i,j)=i+j*j+5;
MU = U;
MU = U.i() - MU.i(); Clean(MU,0.00000001); Print(MU);
MU = U.t().i() - U.i().t(); Clean(MU,0.00000001); Print(MU);
// test LINEQ
{
ColumnVector X1(4), X2(4);
X1(1)=1; X1(2)=2; X1(3)=3; X1(4)=4;
X2(1)=1; X2(2)=10; X2(3)=100; X2(4)=1000;
Matrix A(4,4);
A(1,1)=1; A(1,2)=3; A(1,3)=0; A(1,4)=0;
A(2,1)=3; A(2,2)=2; A(2,3)=5; A(2,4)=0;
A(3,1)=0; A(3,2)=5; A(3,3)=4; A(3,4)=1;
A(4,1)=0; A(4,2)=0; A(4,3)=1; A(4,4)=3;
process(A,X1,X2);
BandMatrix B(4,1,1); B.Inject(A);
process(B,X1,X2);
UpperTriangularMatrix U(4);
U(1,1)=1; U(1,2)=2; U(1,3)=3; U(1,4)=4;
U(2,2)=8; U(2,3)=7; U(2,4)=6;
U(3,3)=2; U(3,4)=7;
U(4,4)=1;
process(U,X1,X2);
// check rowwise load
UpperTriangularMatrix U1(4);
U1.Row(1) << 1 << 2 << 3 << 4;
U1.Row(2) << 8 << 7 << 6;
U1.Row(3) << 2 << 7;
U1.Row(4) << 1;
U1 -= U;
Print(U1);
LowerTriangularMatrix L = U.t();
process(L,X1,X2);
}
// test inversion of poorly conditioned matrix
// a user complained this didn't work under OS9
{
Matrix M(4,4);
M << 8.613057e+00 << 8.693985e+00 << -2.322050e-01 << 0.000000e+00
<< 8.693985e+00 << 8.793868e+00 << -2.346310e-01 << 0.000000e+00
<< -2.322050e-01 << -2.346310e-01 << 6.264000e-03 << 0.000000e+00
<< 0.000000e+00 << 0.000000e+00 << 0.000000e+00 << 3.282806e+03 ;
Matrix MI = M.i();
DiagonalMatrix I(4); I = 1;
Matrix Diff = MI * M - I;
Clean(Diff,0.00000001); Print(Diff);
// Alternatively do Cholesky
SymmetricMatrix SM; SM << M;
LowerTriangularMatrix LT = Cholesky(SM).i();
MI = LT.t() * LT; Diff = MI * M - I;
Clean(Diff,0.00000001); Print(Diff);
}
// cout << "\nEnd of tenth test\n";
}