401 lines
12 KiB
Text
401 lines
12 KiB
Text
/*
|
|
* scan_ransac implementation
|
|
*
|
|
* Copyright (C) Dorit Borrmann
|
|
*
|
|
* Released under the GPL version 3.
|
|
*
|
|
*/
|
|
|
|
#define WANT_STREAM ///< define the WANT stream :)
|
|
#include <string>
|
|
using std::string;
|
|
#include <iostream>
|
|
using std::cout;
|
|
using std::cerr;
|
|
using std::endl;
|
|
#include <fstream>
|
|
using std::ofstream;
|
|
#include <errno.h>
|
|
#include <iostream>
|
|
|
|
#include "slam6d/scan_io.h"
|
|
#include "slam6d/globals.icc"
|
|
#include <float.h>
|
|
|
|
#include "shapes/geom_math.h"
|
|
#include "shapes/integralimg.h"
|
|
#include "shapes/scan_ransac.h"
|
|
#include "shapes/NumberRecOctree.h"
|
|
|
|
#ifdef _OPENMP
|
|
#include <omp.h>
|
|
#endif
|
|
|
|
|
|
#ifndef _MSC_VER
|
|
#include <getopt.h>
|
|
#else
|
|
#include "XGetopt.h"
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
#define strcasecmp _stricmp
|
|
#define strncasecmp _strnicmp
|
|
#include <windows.h>
|
|
#include <direct.h>
|
|
#else
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <strings.h>
|
|
#include <dlfcn.h>
|
|
#endif
|
|
|
|
|
|
void *dummy(void *nd) {
|
|
NumberDetector *ND = (NumberDetector *)nd;
|
|
ND->RANSAC(*(ND->scan_points));
|
|
return 0;
|
|
}
|
|
|
|
|
|
///////////////// constants for RANSAC and number recognition
|
|
void NumberDetector::printNumbers() {
|
|
for (int i = 0; i < 10; i++)
|
|
cout << detectedNumbers[i].getConsensus() << endl;
|
|
cout << endl;
|
|
}
|
|
|
|
// comment the following line if you want greyscale image
|
|
#define BINARY_IMG
|
|
#include "shapes/config_sickday.h"
|
|
#include "shapes/numberrec.h"
|
|
|
|
int image_counter = 0;
|
|
|
|
|
|
bool NumberDetector::FindNumber(vector<double *> &points, double plane[4]) {
|
|
bool res = false;
|
|
double maxx = -DBL_MAX;
|
|
double minx = DBL_MAX;
|
|
double maxz = -DBL_MAX;
|
|
double minz = DBL_MAX;
|
|
|
|
// rotate onto the floor plane
|
|
double t[3]; t[0] = t[1] = t[2] = 0.0;
|
|
double alignxf[16];
|
|
double aa[4];
|
|
aa[0] = -1.0 * acos(plane[1]);
|
|
aa[1] = plane[2] / sqrt( plane[2]*plane[2] + plane[0]*plane[0] );
|
|
aa[2] = 0;
|
|
aa[3] = -plane[0] / sqrt( plane[2]*plane[2] + plane[0]*plane[0] );
|
|
|
|
AAToMatrix(aa, t, alignxf);
|
|
|
|
/////// acount for rotation around y axis
|
|
double up[3];
|
|
double rPT[3];
|
|
double rmat[16];
|
|
double tmp[16];
|
|
Cross(plane, aa+1, up);
|
|
Normalize3(up);
|
|
|
|
// check wether up goes up or down, and flip if it goes down
|
|
if (up[1] < 0) {
|
|
up[0] = -up[0];
|
|
up[1] = -up[1];
|
|
up[2] = -up[2];
|
|
}
|
|
|
|
double upx = up[0] * alignxf[0] + up[1] * alignxf[4] + up[2] * alignxf[8];
|
|
// double upy = up[0] * alignxf[1] + up[1] * alignxf[5] + up[2] * alignxf[9]; // should be redundant
|
|
double upz = up[0] * alignxf[2] + up[1] * alignxf[6] + up[2] * alignxf[10];
|
|
|
|
rPT[0] = rPT[2] = 0.0;
|
|
rPT[1] = atan2(upz, upx) + M_PI/2.0;
|
|
EulerToMatrix4(t, rPT, rmat);
|
|
|
|
// combine rotation onto plane with rotaion around y
|
|
MMult(rmat, alignxf, tmp);
|
|
for (int i = 0; i < 16; i++) {
|
|
alignxf[i] = tmp[i];
|
|
}
|
|
// done
|
|
|
|
// compute 2d projection of the points, and scale reflectivity
|
|
double **npoints = new double*[points.size()];
|
|
for (unsigned int i = 0; i < points.size(); i++) {
|
|
double *p = points[i];
|
|
npoints[i] = new double[4];
|
|
|
|
npoints[i][0] = -(p[0] * alignxf[0] + p[1] * alignxf[4] + p[2] * alignxf[8]);
|
|
npoints[i][1] = p[0] * alignxf[1] + p[1] * alignxf[5] + p[2] * alignxf[9]; // this should be redundant
|
|
npoints[i][2] = p[0] * alignxf[2] + p[1] * alignxf[6] + p[2] * alignxf[10];
|
|
|
|
npoints[i][3] = (p[3] - MINREFL ) / (MAXREFL - MINREFL) ; // scale between 0 and 1
|
|
if (npoints[i][3] > 1.0) npoints[i][3] = 1.0; // 0 and 1 _are_ min and max
|
|
if (npoints[i][3] < 0.0) npoints[i][3] = 0.0;
|
|
|
|
if (npoints[i][0] > maxx) maxx = npoints[i][0];
|
|
if (npoints[i][0] < minx) minx = npoints[i][0];
|
|
if (npoints[i][2] > maxz) maxz = npoints[i][2];
|
|
if (npoints[i][2] < minz) minz = npoints[i][2];
|
|
}
|
|
|
|
|
|
// create a binary image which is used to find a rectangular shape using integral images
|
|
double lx = maxx - minx;
|
|
double lz = maxz - minz;
|
|
int maxppm = 0;
|
|
if (lx > 50.0 && lz > 70.0) { // only if point cloud has the necessary extent TODO change magic numbers
|
|
int px = lx / IMG_RES +1;
|
|
int pz = lz / IMG_RES +1;
|
|
|
|
int **image = new int*[px]; // allocate mem
|
|
for (int i = 0; i < px; i++) {
|
|
image[i] = new int[pz];
|
|
}
|
|
|
|
for (int i = 0; i < px; i++) {
|
|
for (int j = 0; j < pz; j++) {
|
|
image[i][j] = 0;
|
|
}
|
|
}
|
|
for (unsigned int i = 0; i < points.size(); i++) {
|
|
double *p = npoints[i];
|
|
int x = (double)(px-1) * ( p[0]-minx ) / lx;
|
|
int z = (double)(pz-1) * ( p[2]-minz ) / lz;
|
|
image[x][z] = 1;
|
|
}
|
|
|
|
// compute integral image and compute best haar feature to detect a board
|
|
int XX, ZZ;
|
|
double SCORE;
|
|
integral_img iimg(image, px, pz);
|
|
SCORE = iimg.getBest( XX, ZZ);
|
|
|
|
// with some certainty there is a rectangular part in the image that is number-sized
|
|
if (SCORE > MIN_SCORE) {
|
|
#ifndef BINARY_IMG
|
|
maxppm = 4096; // greyscale
|
|
#else
|
|
maxppm = 1; // binary
|
|
#endif
|
|
// create number part of the image with reflectance values...
|
|
int maxx = XX + BOARD_SIZE_X < px ? XX + BOARD_SIZE_X : px;
|
|
int maxz = ZZ + BOARD_SIZE_Z < pz ? ZZ + BOARD_SIZE_Z : pz;
|
|
for (int i = XX; i < maxx ; i++) {
|
|
for (int j = ZZ; j < maxz; j++) {
|
|
image[i][j] = -1; // remember pixel where no points were
|
|
}
|
|
}
|
|
|
|
int NRPTS = 0;
|
|
double center[3]; center[0] = center[1] = center[2] = 0.0;
|
|
|
|
for (unsigned int i = 0; i < points.size(); i++) {
|
|
double *p = npoints[i];
|
|
double x = (double)(px-1) * ( p[0]-minx ) / lx;
|
|
double z = (double)(pz-1) * ( p[2]-minz ) / lz;
|
|
double xi, zi;
|
|
x = modf(x, &xi);
|
|
z = modf(z, &zi);
|
|
|
|
if (x < 0.5){
|
|
xi--;
|
|
x += 1.0;
|
|
}
|
|
if (z < 0.5) {
|
|
zi--;
|
|
z += 1.0;
|
|
}
|
|
|
|
// points not on the board need not to be used
|
|
if (xi < XX || zi < ZZ || xi > maxx || zi > maxz) continue;
|
|
|
|
// count number of points for normalizing
|
|
NRPTS++;
|
|
center[0] += points[i][0];
|
|
center[1] += points[i][1];
|
|
center[2] += points[i][2];
|
|
|
|
// Use smooth binning with 4096 gray values
|
|
if ( (int)xi < px && (int)zi < pz ) {
|
|
image[(int)xi][(int)zi] += ( (1.5 - x) * (1.5 - z) * p[3]) * 4096;
|
|
if (image[(int)xi][(int)zi] > maxppm) maxppm = image[(int)xi][(int)zi];
|
|
}
|
|
|
|
if ( (int)xi + 1 < px && (int)zi < pz ) {
|
|
image[(int)xi + 1][(int)zi] += ((x - 0.5) * (1.5 - z) * p[3]) * 4096;
|
|
if (image[(int)xi + 1][(int)zi] > maxppm) maxppm = image[(int)xi+1][(int)zi];
|
|
}
|
|
|
|
if ( (int)xi < px && (int)zi + 1 < pz ) {
|
|
image[(int)xi][(int)zi + 1] += ((1.5 - x) * (z - 0.5) * p[3]) * 4096;
|
|
if (image[(int)xi][(int)zi + 1] > maxppm) maxppm = image[(int)xi][(int)zi+1];
|
|
}
|
|
|
|
if ( (int)xi + 1 < px && (int)zi + 1 < pz ) {
|
|
image[(int)xi + 1][(int)zi + 1] += ((x - 0.5) * (z - 0.5) * p[3]) * 4096;
|
|
if (image[(int)xi + 1][(int)zi + 1] > maxppm) maxppm = image[(int)xi+1][(int)zi+1];
|
|
}
|
|
}
|
|
///////////////////////////////////
|
|
#ifndef BINARY_IMG
|
|
int MAX = 0;
|
|
int MIN = 1000000000;
|
|
int AVG = 0;
|
|
#endif
|
|
// color pixels on the border of the image white ( to remove the black border on the board and the inevitable part where no points are)
|
|
for (int i = XX; i < maxx ; i++) {
|
|
for (int j = ZZ; j < maxz; j++) {
|
|
// if ( (j < ZZ + WHITE_BORDER - 1 || j > maxz - WHITE_BORDER - 2 ) || ( i < XX + WHITE_BORDER + 1 || i > maxx - WHITE_BORDER ) ) {
|
|
if ( (j < ZZ + WHITE_BORDER || j > maxz - WHITE_BORDER ) || ( i < XX + WHITE_BORDER || i > maxx - WHITE_BORDER ) ) {
|
|
image[i][j] = maxppm;
|
|
}
|
|
#ifndef BINARY_IMG
|
|
if (image[i][j] > 0 && image[i][j] < MIN) MIN = image[i][j];
|
|
if (image[i][j] > MAX) MAX = image[i][j];
|
|
if (image[i][j] > 0) AVG += image[i][j];
|
|
#endif
|
|
}
|
|
}
|
|
|
|
string filename = "patch" + to_string(image_counter++, 5) + ".pgm";
|
|
ofstream of(filename.c_str(), std::ios::out);
|
|
|
|
#ifndef BINARY_IMG
|
|
of << "P2" << endl << (maxx - XX) << " " << (maxz - ZZ) << endl << 4096 << endl; // greyscale
|
|
#else
|
|
unsigned char ibuffer[(maxx - XX)*(maxz - ZZ)]; // binary
|
|
of << "P5" << endl << (maxx - XX) << " " << (maxz - ZZ) << endl << 1 << endl; // binary
|
|
#endif
|
|
|
|
unsigned int l = 0;
|
|
double val; // temporary value that contains the calibrated reflectivity of a pixel
|
|
double factor = 4096.0/maxppm;
|
|
for (int j = ZZ; j < maxz; j++) {
|
|
for (int i = XX; i < maxx; i++) {
|
|
#ifndef BINARY_IMG
|
|
// of << image[i][j] << " ";
|
|
if (image[i][j] == -1) {
|
|
of << 0 << " ";
|
|
} else {
|
|
of << (int)(factor*image[i][j]) << " ";
|
|
}
|
|
#else
|
|
if (image[i][j] == -1) {
|
|
ibuffer[l++] = (unsigned char)0;
|
|
} else {
|
|
//val = ((double)image[i][j]-MIN)/((double)(MAX-MIN));
|
|
val = ((double)image[i][j])/((double)(NRPTS));
|
|
if (val > REFL_THRESHOLD) {
|
|
//if (image[i][j] > 0.25*maxppm)
|
|
//if (image[i][j] > 4000)
|
|
ibuffer[l++] = (unsigned char)1;
|
|
} else {
|
|
ibuffer[l++] = (unsigned char)0;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#ifdef BINARY_IMG
|
|
of.write((const char*)ibuffer, sizeof(unsigned char) * (maxx - XX) * (maxz - ZZ));
|
|
#endif
|
|
|
|
// done writing board
|
|
of.close();
|
|
|
|
double probability;
|
|
int number;
|
|
// attempt to use OCR
|
|
if ( gocr_recognizeNumber(filename, number, probability) ) {
|
|
cout << filename << ": Best number is " << number << " with p = " << probability << endl;
|
|
|
|
center[0] = center[0] / NRPTS;
|
|
center[1] = center[1] / NRPTS;
|
|
center[2] = center[2] / NRPTS;
|
|
|
|
// remember hypothesis, scale SCORE to a more useful value
|
|
SCORE = (SCORE - SCORE_SCALE) / (1.0 - SCORE_SCALE);
|
|
|
|
// decide where to put the number
|
|
if (number == 1 && detectedNumbers[7].isClose( center) ) { // a 7 can be seen as a 1
|
|
detectedNumbers[7].addObservation(7, probability, SCORE, center, plane);
|
|
} else if (number == 0 && detectedNumbers[8].isClose( center) ) { // an 8 can be mistaken for a 0
|
|
detectedNumbers[8].addObservation(8, probability, SCORE, center, plane);
|
|
} else if (number == 9 && detectedNumbers[8].isClose( center) ) { // an 8 can be mistaken for a 9
|
|
detectedNumbers[8].addObservation(8, probability, SCORE, center, plane);
|
|
} else { // usual case
|
|
detectedNumbers[number].addObservation(number, probability, SCORE, center, plane);
|
|
}
|
|
|
|
res = true;
|
|
}
|
|
}
|
|
|
|
|
|
// remove image
|
|
for (int i = 0; i < px; i++) {
|
|
delete[] image[i];
|
|
}
|
|
delete[] image;
|
|
}
|
|
|
|
// remove projected points
|
|
for (unsigned int i = 0; i < points.size(); i++) {
|
|
delete[] npoints[i];
|
|
}
|
|
delete[] npoints;
|
|
return res;
|
|
}
|
|
|
|
|
|
void NumberDetector::RANSAC(vector<const double *> &scan_points) {
|
|
// stores 3 sample points
|
|
vector<double *> ps;
|
|
double a[3], b[3], c[3], plane[4];
|
|
// create octree from the points
|
|
NumberRecOctTree<double> *oct = new NumberRecOctTree<double>(scan_points, 50.0, PointType<double>::USE_REFLECTANCE );
|
|
|
|
scan_points.clear();
|
|
while(true) {
|
|
ps.clear();
|
|
oct->DrawPoints(ps, 3);
|
|
|
|
if ( !ps.empty()) { // if we have random points
|
|
for (int j = 0; j < 3;j++) { // compute plane
|
|
a[j] = ps[0][j] - ps[1][j];
|
|
b[j] = ps[0][j] - ps[2][j];
|
|
c[j] = ps[0][j] + ps[1][j] + ps[2][j];
|
|
c[j] /= 3.0;
|
|
}
|
|
Cross(a,b, plane);
|
|
if (fabs(Len2(plane)) < 0.0001 ) continue; // points are collinear
|
|
Normalize3(plane);
|
|
if (fabs(plane[1]) > 0.8) continue; // plane is floor or ceiling
|
|
|
|
plane[3] = -1.0 * planeDist(c, plane[0], plane[1], plane[2], 0); // compute distance from origin
|
|
if (plane[3] < 0.0) { // flip normal if necessary
|
|
for (int j = 0; j < 4;j++) {
|
|
plane[j] = -plane[j];
|
|
}
|
|
}
|
|
// count number of points on the plane
|
|
int r = oct->PointsOnNumber(plane, MAX_DIST_TO_PLANE, c, 105.0);
|
|
|
|
if (r > MIN_NR_PTS) {
|
|
vector<double * > points;
|
|
oct->PointsOnNumber(plane, MAX_DIST_TO_PLANE, c, 105.0, points);
|
|
if ( FindNumber(points, plane) ) {
|
|
printNumbers();
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
delete oct;
|
|
}
|