109 lines
4 KiB
Text
109 lines
4 KiB
Text
//----------------------------------------------------------------------
|
|
// File: brute.cpp
|
|
// Programmer: Sunil Arya and David Mount
|
|
// Description: Brute-force nearest neighbors
|
|
// Last modified: 05/03/05 (Version 1.1)
|
|
//----------------------------------------------------------------------
|
|
// Copyright (c) 1997-2005 University of Maryland and Sunil Arya and
|
|
// David Mount. All Rights Reserved.
|
|
//
|
|
// This software and related documentation is part of the Approximate
|
|
// Nearest Neighbor Library (ANN). This software is provided under
|
|
// the provisions of the Lesser GNU Public License (LGPL). See the
|
|
// file ../ReadMe.txt for further information.
|
|
//
|
|
// The University of Maryland (U.M.) and the authors make no
|
|
// representations about the suitability or fitness of this software for
|
|
// any purpose. It is provided "as is" without express or implied
|
|
// warranty.
|
|
//----------------------------------------------------------------------
|
|
// History:
|
|
// Revision 0.1 03/04/98
|
|
// Initial release
|
|
// Revision 1.1 05/03/05
|
|
// Added fixed-radius kNN search
|
|
//----------------------------------------------------------------------
|
|
|
|
#include <ANN/ANNx.h> // all ANN includes
|
|
#include "pr_queue_k.h" // k element priority queue
|
|
|
|
//----------------------------------------------------------------------
|
|
// Brute-force search simply stores a pointer to the list of
|
|
// data points and searches linearly for the nearest neighbor.
|
|
// The k nearest neighbors are stored in a k-element priority
|
|
// queue (which is implemented in a pretty dumb way as well).
|
|
//
|
|
// If ANN_ALLOW_SELF_MATCH is ANNfalse then data points at distance
|
|
// zero are not considered.
|
|
//
|
|
// Note that the error bound eps is passed in, but it is ignored.
|
|
// These routines compute exact nearest neighbors (which is needed
|
|
// for validation purposes in ann_test.cpp).
|
|
//----------------------------------------------------------------------
|
|
|
|
ANNbruteForce::ANNbruteForce( // constructor from point array
|
|
ANNpointArray pa, // point array
|
|
int n, // number of points
|
|
int dd) // dimension
|
|
{
|
|
dim = dd; n_pts = n; pts = pa;
|
|
}
|
|
|
|
ANNbruteForce::~ANNbruteForce() { } // destructor (empty)
|
|
|
|
void ANNbruteForce::annkSearch( // approx k near neighbor search
|
|
ANNpoint q, // query point
|
|
int k, // number of near neighbors to return
|
|
ANNidxArray nn_idx, // nearest neighbor indices (returned)
|
|
ANNdistArray dd, // dist to near neighbors (returned)
|
|
double eps) // error bound (ignored)
|
|
{
|
|
ANNmin_k mk(k); // construct a k-limited priority queue
|
|
int i;
|
|
|
|
if (k > n_pts) { // too many near neighbors?
|
|
annError("Requesting more near neighbors than data points", ANNabort);
|
|
}
|
|
// run every point through queue
|
|
for (i = 0; i < n_pts; i++) {
|
|
// compute distance to point
|
|
ANNdist sqDist = annDist(dim, pts[i], q);
|
|
if (ANN_ALLOW_SELF_MATCH || sqDist != 0)
|
|
mk.insert(sqDist, i);
|
|
}
|
|
for (i = 0; i < k; i++) { // extract the k closest points
|
|
dd[i] = mk.ith_smallest_key(i);
|
|
nn_idx[i] = mk.ith_smallest_info(i);
|
|
}
|
|
}
|
|
|
|
int ANNbruteForce::annkFRSearch( // approx fixed-radius kNN search
|
|
ANNpoint q, // query point
|
|
ANNdist sqRad, // squared radius
|
|
int k, // number of near neighbors to return
|
|
ANNidxArray nn_idx, // nearest neighbor array (returned)
|
|
ANNdistArray dd, // dist to near neighbors (returned)
|
|
double eps) // error bound
|
|
{
|
|
ANNmin_k mk(k); // construct a k-limited priority queue
|
|
int i;
|
|
int pts_in_range = 0; // number of points in query range
|
|
// run every point through queue
|
|
for (i = 0; i < n_pts; i++) {
|
|
// compute distance to point
|
|
ANNdist sqDist = annDist(dim, pts[i], q);
|
|
if (sqDist <= sqRad && // within radius bound
|
|
(ANN_ALLOW_SELF_MATCH || sqDist != 0)) { // ...and no self match
|
|
mk.insert(sqDist, i);
|
|
pts_in_range++;
|
|
}
|
|
}
|
|
for (i = 0; i < k; i++) { // extract the k closest points
|
|
if (dd != NULL)
|
|
dd[i] = mk.ith_smallest_key(i);
|
|
if (nn_idx != NULL)
|
|
nn_idx[i] = mk.ith_smallest_info(i);
|
|
}
|
|
|
|
return pts_in_range;
|
|
}
|