196 lines
4.9 KiB
Text
196 lines
4.9 KiB
Text
/*
|
|
* kd implementation
|
|
*
|
|
* Copyright (C) Andreas Nuechter, Kai Lingemann, Thomas Escher
|
|
*
|
|
* Released under the GPL version 3.
|
|
*
|
|
*/
|
|
|
|
/** @file
|
|
* @brief An optimized k-d tree implementation
|
|
* @author Andreas Nuechter. Institute of Computer Science, University of Osnabrueck, Germany.
|
|
* @author Kai Lingemann. Institute of Computer Science, University of Osnabrueck, Germany.
|
|
* @author Thomas Escher Institute of Computer Science, University of Osnabrueck, Germany.
|
|
*/
|
|
|
|
#ifdef _MSC_VER
|
|
#define _USE_MATH_DEFINES
|
|
#endif
|
|
|
|
#include "slam6d/kd.h"
|
|
#include "slam6d/globals.icc"
|
|
|
|
#include <iostream>
|
|
using std::cout;
|
|
using std::cerr;
|
|
using std::endl;
|
|
#include <algorithm>
|
|
using std::swap;
|
|
#include <cmath>
|
|
#include <cstring>
|
|
|
|
// KDtree class static variables
|
|
KDParams KDtree::params[MAX_OPENMP_NUM_THREADS];
|
|
|
|
/**
|
|
* Constructor
|
|
*
|
|
* Create a KD tree from the points pointed to by the array pts
|
|
*
|
|
* @param pts 3D array of points
|
|
* @param n number of points
|
|
*/
|
|
KDtree::KDtree(double **pts, int n)
|
|
{
|
|
// Find bbox
|
|
double xmin = pts[0][0], xmax = pts[0][0];
|
|
double ymin = pts[0][1], ymax = pts[0][1];
|
|
double zmin = pts[0][2], zmax = pts[0][2];
|
|
for (int i = 1; i < n; i++) {
|
|
xmin = min(xmin, pts[i][0]);
|
|
xmax = max(xmax, pts[i][0]);
|
|
ymin = min(ymin, pts[i][1]);
|
|
ymax = max(ymax, pts[i][1]);
|
|
zmin = min(zmin, pts[i][2]);
|
|
zmax = max(zmax, pts[i][2]);
|
|
}
|
|
|
|
// Leaf nodes
|
|
if ((n > 0) && (n <= 10)) {
|
|
npts = n;
|
|
leaf.p = new double*[n];
|
|
memcpy(leaf.p, pts, n * sizeof(double *));
|
|
return;
|
|
}
|
|
|
|
// Else, interior nodes
|
|
npts = 0;
|
|
|
|
node.center[0] = 0.5 * (xmin+xmax);
|
|
node.center[1] = 0.5 * (ymin+ymax);
|
|
node.center[2] = 0.5 * (zmin+zmax);
|
|
node.dx = 0.5 * (xmax-xmin);
|
|
node.dy = 0.5 * (ymax-ymin);
|
|
node.dz = 0.5 * (zmax-zmin);
|
|
node.r2 = sqr(node.dx) + sqr(node.dy) + sqr(node.dz);
|
|
|
|
// Find longest axis
|
|
if (node.dx > node.dy) {
|
|
if (node.dx > node.dz) {
|
|
node.splitaxis = 0;
|
|
} else {
|
|
node.splitaxis = 2;
|
|
}
|
|
} else {
|
|
if (node.dy > node.dz) {
|
|
node.splitaxis = 1;
|
|
} else {
|
|
node.splitaxis = 2;
|
|
}
|
|
}
|
|
|
|
// Partition
|
|
double splitval = node.center[node.splitaxis];
|
|
|
|
if ( fabs(max(max(node.dx,node.dy),node.dz)) < 0.01 ) {
|
|
npts = n;
|
|
leaf.p = new double*[n];
|
|
memcpy(leaf.p, pts, n * sizeof(double *));
|
|
return;
|
|
}
|
|
|
|
double **left = pts, **right = pts + n - 1;
|
|
while (1) {
|
|
while ((*left)[node.splitaxis] < splitval)
|
|
left++;
|
|
while ((*right)[node.splitaxis] >= splitval)
|
|
right--;
|
|
if (right < left)
|
|
break;
|
|
swap(*left, *right);
|
|
}
|
|
|
|
// Build subtrees
|
|
int i;
|
|
#ifdef WITH_OPENMP_KD // does anybody know the reason why this is slower ?? --Andreas
|
|
omp_set_num_threads(OPENMP_NUM_THREADS);
|
|
#pragma omp parallel for schedule(dynamic)
|
|
#endif
|
|
for (i = 0; i < 2; i++) {
|
|
if (i == 0) node.child1 = new KDtree(pts, left-pts);
|
|
if (i == 1) node.child2 = new KDtree(left, n-(left-pts));
|
|
}
|
|
}
|
|
|
|
KDtree::~KDtree()
|
|
{
|
|
if (!npts) {
|
|
#ifdef WITH_OPENMP_KD
|
|
omp_set_num_threads(OPENMP_NUM_THREADS);
|
|
#pragma omp parallel for schedule(dynamic)
|
|
#endif
|
|
for (int i = 0; i < 2; i++) {
|
|
if (i == 0 && node.child1) delete node.child1;
|
|
if (i == 1 && node.child2) delete node.child2;
|
|
}
|
|
} else {
|
|
if (leaf.p) delete [] leaf.p;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Finds the closest point within the tree,
|
|
* wrt. the point given as first parameter.
|
|
* @param _p point
|
|
* @param maxdist2 maximal search distance.
|
|
* @param threadNum Thread number, for parallelization
|
|
* @return Pointer to the closest point
|
|
*/
|
|
double *KDtree::FindClosest(double *_p, double maxdist2, int threadNum) const
|
|
{
|
|
params[threadNum].closest = 0;
|
|
params[threadNum].closest_d2 = maxdist2;
|
|
params[threadNum].p = _p;
|
|
_FindClosest(threadNum);
|
|
return params[threadNum].closest;
|
|
}
|
|
|
|
/**
|
|
* Wrapped function
|
|
*/
|
|
void KDtree::_FindClosest(int threadNum) const
|
|
{
|
|
// Leaf nodes
|
|
if (npts) {
|
|
for (int i = 0; i < npts; i++) {
|
|
double myd2 = Dist2(params[threadNum].p, leaf.p[i]);
|
|
if (myd2 < params[threadNum].closest_d2) {
|
|
params[threadNum].closest_d2 = myd2;
|
|
params[threadNum].closest = leaf.p[i];
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Quick check of whether to abort
|
|
double approx_dist_bbox = max(max(fabs(params[threadNum].p[0]-node.center[0])-node.dx,
|
|
fabs(params[threadNum].p[1]-node.center[1])-node.dy),
|
|
fabs(params[threadNum].p[2]-node.center[2])-node.dz);
|
|
if (approx_dist_bbox >= 0 && sqr(approx_dist_bbox) >= params[threadNum].closest_d2)
|
|
return;
|
|
|
|
// Recursive case
|
|
double myd = node.center[node.splitaxis] - params[threadNum].p[node.splitaxis];
|
|
if (myd >= 0.0) {
|
|
node.child1->_FindClosest(threadNum);
|
|
if (sqr(myd) < params[threadNum].closest_d2) {
|
|
node.child2->_FindClosest(threadNum);
|
|
}
|
|
} else {
|
|
node.child2->_FindClosest(threadNum);
|
|
if (sqr(myd) < params[threadNum].closest_d2) {
|
|
node.child1->_FindClosest(threadNum);
|
|
}
|
|
}
|
|
}
|