3dpcp/.svn/pristine/ec/ecb7555697b87181f525ef3de68a909bc80a41a5.svn-base
2012-10-24 11:28:22 +02:00

729 lines
26 KiB
Text

/*
* scan_red implementation
*
* Copyright (C) Johannes Schauer
*
* Released under the GPL version 3.
*
*/
#include "slam6d/scan.h"
#include "slam6d/globals.icc"
#include <string>
using std::string;
#include <iostream>
using std::cout;
using std::endl;
#include <algorithm>
#include <boost/program_options.hpp>
namespace po = boost::program_options;
#include "slam6d/fbr/panorama.h"
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/imgproc/imgproc_c.h>
#include <sys/stat.h>
#include <sys/types.h>
enum image_type {M_RANGE, M_INTENSITY};
enum segment_method {THRESHOLD, ADAPTIVE_THRESHOLD, PYR_MEAN_SHIFT, PYR_SEGMENTATION, WATERSHED};
/* Function used to check that 'opt1' and 'opt2' are not specified
at the same time. */
void conflicting_options(const po::variables_map & vm,
const char *opt1, const char *opt2)
{
if (vm.count(opt1) && !vm[opt1].defaulted()
&& vm.count(opt2) && !vm[opt2].defaulted())
throw std::logic_error(string("Conflicting options '")
+ opt1 + "' and '" + opt2 + "'.");
}
/* Function used to check that if 'for_what' is specified, then
'required_option' is specified too. */
void option_dependency(const po::variables_map & vm,
const char *for_what, const char *required_option)
{
if (vm.count(for_what) && !vm[for_what].defaulted())
if (vm.count(required_option) == 0
|| vm[required_option].defaulted())
throw std::logic_error(string("Option '") + for_what +
"' requires option '" +
required_option + "'.");
}
/*
* validates panorama method specification
*/
namespace fbr {
void validate(boost::any& v, const std::vector<std::string>& values,
projection_method*, int) {
if (values.size() == 0)
throw std::runtime_error("Invalid model specification");
string arg = values.at(0);
if(strcasecmp(arg.c_str(), "EQUIRECTANGULAR") == 0) v = EQUIRECTANGULAR;
else if(strcasecmp(arg.c_str(), "CYLINDRICAL") == 0) v = CYLINDRICAL;
else if(strcasecmp(arg.c_str(), "MERCATOR") == 0) v = MERCATOR;
else if(strcasecmp(arg.c_str(), "RECTILINEAR") == 0) v = RECTILINEAR;
else if(strcasecmp(arg.c_str(), "PANNINI") == 0) v = PANNINI;
else if(strcasecmp(arg.c_str(), "STEREOGRAPHIC") == 0) v = STEREOGRAPHIC;
else if(strcasecmp(arg.c_str(), "ZAXIS") == 0) v = ZAXIS;
else if(strcasecmp(arg.c_str(), "CONIC") == 0) v = CONIC;
else throw std::runtime_error(std::string("projection method ") + arg + std::string(" is unknown"));
}
}
/*
* validates segmentation method specification
*/
void validate(boost::any& v, const std::vector<std::string>& values,
segment_method*, int) {
if (values.size() == 0)
throw std::runtime_error("Invalid model specification");
string arg = values.at(0);
if(strcasecmp(arg.c_str(), "THRESHOLD") == 0) v = THRESHOLD;
else if(strcasecmp(arg.c_str(), "ADAPTIVE_THRESHOLD") == 0) v = ADAPTIVE_THRESHOLD;
else if(strcasecmp(arg.c_str(), "PYR_MEAN_SHIFT") == 0) v = PYR_MEAN_SHIFT;
else if(strcasecmp(arg.c_str(), "PYR_SEGMENTATION") == 0) v = PYR_SEGMENTATION;
else if(strcasecmp(arg.c_str(), "WATERSHED") == 0) v = WATERSHED;
else throw std::runtime_error(std::string("segmentation method ") + arg + std::string(" is unknown"));
}
/*
* validates input type specification
*/
void validate(boost::any& v, const std::vector<std::string>& values,
IOType*, int) {
if (values.size() == 0)
throw std::runtime_error("Invalid model specification");
string arg = values.at(0);
try {
v = formatname_to_io_type(arg.c_str());
} catch (...) { // runtime_error
throw std::runtime_error("Format " + arg + " unknown.");
}
}
void segmentation_option_dependency(const po::variables_map & vm, segment_method stype, const char *option)
{
if (vm.count("segment") && vm["segment"].as<segment_method>() == stype) {
if (!vm.count(option)) {
throw std::logic_error (string("this segmentation option needs ")+option+" to be set");
}
}
}
void segmentation_option_conflict(const po::variables_map & vm, segment_method stype, const char *option)
{
if (vm.count("segment") && vm["segment"].as<segment_method>() == stype) {
if (vm.count(option)) {
throw std::logic_error (string("this segmentation option is incompatible with ")+option);
}
}
}
/*
* parse commandline options, fill arguments
*/
void parse_options(int argc, char **argv, int &start, int &end,
bool &scanserver, image_type &itype, int &width, int &height,
fbr::projection_method &ptype, string &dir, IOType &iotype,
int &maxDist, int &minDist, int &nImages, int &pParam, bool &logarithm,
float &cutoff, segment_method &stype, string &marker, bool &dump_pano,
bool &dump_seg, double &thresh, int &maxlevel, int &radius,
double &pyrlinks, double &pyrcluster, int &pyrlevels)
{
po::options_description generic("Generic options");
generic.add_options()
("help,h", "output this help message");
po::options_description input("Input options");
input.add_options()
("start,s", po::value<int>(&start)->default_value(0),
"start at scan <arg> (i.e., neglects the first <arg> scans) "
"[ATTENTION: counting naturally starts with 0]")
("end,e", po::value<int>(&end)->default_value(-1),
"end after scan <arg>")
("format,f", po::value<IOType>(&iotype)->default_value(UOS),
"using shared library <arg> for input. (chose F from {uos, uos_map, "
"uos_rgb, uos_frames, uos_map_frames, old, rts, rts_map, ifp, "
"riegl_txt, riegl_rgb, riegl_bin, zahn, ply})")
("max,M", po::value<int>(&maxDist)->default_value(-1),
"neglegt all data points with a distance larger than <arg> 'units")
("min,m", po::value<int>(&minDist)->default_value(-1),
"neglegt all data points with a distance smaller than <arg> 'units")
("scanserver,S", po::value<bool>(&scanserver)->default_value(false),
"Use the scanserver as an input method and handling of scan data");
po::options_description image("Panorama image options");
image.add_options()
("range,r", "create range image")
("intensity,i", "create intensity image")
("width,w", po::value<int>(&width)->default_value(1280),
"width of panorama")
("height,h", po::value<int>(&height)->default_value(960),
"height of panorama")
("panorama,p", po::value<fbr::projection_method>(&ptype)->
default_value(fbr::EQUIRECTANGULAR), "panorama type (EQUIRECTANGULAR, "
"CYLINDRICAL, MERCATOR, RECTILINEAR, PANNINI, STEREOGRAPHIC, ZAXIS, "
"CONIC)")
("num-images,N", po::value<int>(&nImages)->default_value(1),
"number of images used for some projections")
("proj-param,P", po::value<int>(&pParam)->default_value(0),
"special projection parameter")
("dump-pano,d", po::bool_switch(&dump_pano),
"output panorama (useful to create marker image for watershed)");
po::options_description range_image("Range image options");
range_image.add_options()
("logarithm,L", po::bool_switch(&logarithm),
"use the logarithm for range image panoramas")
("cutoff,C", po::value<float>(&cutoff)->default_value(0.0), // FIXME: percentage is the wrong word
"percentage of furthest away data points to cut off to improve "
"precision for closer values (values from 0.0 to 1.0)");
po::options_description segment("Segmentation options");
segment.add_options()
("segment,g", po::value<segment_method>(&stype)->
default_value(PYR_MEAN_SHIFT), "segmentation method (THRESHOLD, "
"ADAPTIVE_THRESHOLD, PYR_MEAN_SHIFT, PYR_SEGMENTATION, WATERSHED)")
("marker,K", po::value<string>(&marker),
"marker mask for watershed segmentation")
("thresh,T", po::value<double>(&thresh),
"threshold for threshold segmentation")
("maxlevel,X", po::value<int>(&maxlevel),
"maximum level for meanshift segmentation")
("radius,R", po::value<int>(&radius),
"radius for meanshift segmentation")
("links,l", po::value<double>(&pyrlinks),
"error threshold for establishing the links for pyramid segmentation")
("clustering,c", po::value<double>(&pyrcluster),
"error threshold for the segments clustering for pyramid "
"segmentation")
("levels,E", po::value<int>(&pyrlevels)->default_value(4),
"levels of pyramid segmentation")
("dump-seg,D", po::bool_switch(&dump_seg),
"output segmentation image (for debugging)");
po::options_description hidden("Hidden options");
hidden.add_options()
("input-dir", po::value<string>(&dir), "input dir");
// all options
po::options_description all;
all.add(generic).add(input).add(image).add(range_image).add(segment).add(hidden);
// options visible with --help
po::options_description cmdline_options;
cmdline_options.add(generic).add(input).add(image).add(range_image).add(segment);
// positional argument
po::positional_options_description pd;
pd.add("input-dir", 1);
// process options
po::variables_map vm;
po::store(po::command_line_parser(argc, argv).
options(all).positional(pd).run(), vm);
po::notify(vm);
// display help
if (vm.count("help")) {
cout << cmdline_options;
cout << "\nExample usage:\n"
<< "bin/scan2segments -s 0 -e 0 -f riegl_txt --segment PYR_SEGMENTATION -l 50 -c 50 -E 4 -D -i ~/path/to/bremen_city\n"
<< "bin/scan2segments -s 0 -e 0 -f riegl_txt --segment PYR_SEGMENTATION -l 255 -c 30 -E 2 -D -i ~/path/to/bremen_city\n";
exit(0);
}
// option conflicts and dependencies
conflicting_options(vm, "range", "intensity");
option_dependency(vm, "logarithm", "range");
option_dependency(vm, "cutoff", "range");
// decide between range and intensity panorama
if (vm.count("range"))
itype = M_RANGE;
else
itype = M_INTENSITY;
segmentation_option_dependency(vm, WATERSHED, "marker");
segmentation_option_conflict(vm, WATERSHED, "thresh");
segmentation_option_conflict(vm, WATERSHED, "maxlevel");
segmentation_option_conflict(vm, WATERSHED, "radius");
segmentation_option_conflict(vm, WATERSHED, "links");
segmentation_option_conflict(vm, WATERSHED, "clustering");
segmentation_option_conflict(vm, WATERSHED, "levels");
segmentation_option_conflict(vm, THRESHOLD, "marker");
segmentation_option_dependency(vm, THRESHOLD, "thresh");
segmentation_option_conflict(vm, THRESHOLD, "maxlevel");
segmentation_option_conflict(vm, THRESHOLD, "radius");
segmentation_option_conflict(vm, THRESHOLD, "links");
segmentation_option_conflict(vm, THRESHOLD, "clustering");
segmentation_option_conflict(vm, THRESHOLD, "levels");
segmentation_option_conflict(vm, PYR_MEAN_SHIFT, "marker");
segmentation_option_conflict(vm, PYR_MEAN_SHIFT, "thresh");
segmentation_option_dependency(vm, PYR_MEAN_SHIFT, "maxlevel");
segmentation_option_dependency(vm, PYR_MEAN_SHIFT, "radius");
segmentation_option_conflict(vm, PYR_MEAN_SHIFT, "links");
segmentation_option_conflict(vm, PYR_MEAN_SHIFT, "clustering");
segmentation_option_conflict(vm, PYR_MEAN_SHIFT, "levels");
segmentation_option_conflict(vm, PYR_SEGMENTATION, "marker");
segmentation_option_conflict(vm, PYR_SEGMENTATION, "thresh");
segmentation_option_conflict(vm, PYR_SEGMENTATION, "maxlevel");
segmentation_option_conflict(vm, PYR_SEGMENTATION, "radius");
segmentation_option_dependency(vm, PYR_SEGMENTATION, "links");
segmentation_option_dependency(vm, PYR_SEGMENTATION, "clustering");
// correct pParam and nImages for certain panorama types
if (ptype == fbr::PANNINI && pParam == 0) {
pParam = 1;
if(nImages < 3) nImages = 3;
}
if (ptype == fbr::STEREOGRAPHIC && pParam == 0) {
pParam = 2;
if(nImages < 3) nImages = 3;
}
if (ptype == fbr::RECTILINEAR && nImages < 3) {
nImages = 3;
}
// add trailing slash to directory if not present yet
if (dir[dir.length()-1] != '/') dir = dir + "/";
}
/*
* retrieve a cv::Mat with x,y,z,r from a scan object
* functionality borrowed from scan_cv::convertScanToMat but this function
* does not allow a scanserver to be used, prints to stdout and can only
* handle a single scan
*/
cv::Mat scan2mat(Scan *source)
{
DataXYZ xyz = source->get("xyz");
DataReflectance xyz_reflectance = source->get("reflectance");
unsigned int nPoints = xyz.size();
cv::Mat scan(nPoints,1,CV_32FC(4));
scan = cv::Scalar::all(0);
cv::MatIterator_<cv::Vec4f> it;
it = scan.begin<cv::Vec4f>();
for(unsigned int i = 0; i < nPoints; i++){
float x, y, z, reflectance;
x = xyz[i][0];
y = xyz[i][1];
z = xyz[i][2];
reflectance = xyz_reflectance[i];
//normalize the reflectance
reflectance += 32;
reflectance /= 64;
reflectance -= 0.2;
reflectance /= 0.3;
if (reflectance < 0) reflectance = 0;
if (reflectance > 1) reflectance = 1;
(*it)[0] = x;
(*it)[1] = y;
(*it)[2] = z;
(*it)[3] = reflectance;
++it;
}
return scan;
}
/*
* convert a matrix of float values (range image) to a matrix of unsigned
* eight bit characters using different techniques
*/
cv::Mat float2uchar(cv::Mat &source, bool logarithm, float cutoff)
{
cv::Mat result(source.size(), CV_8U, cv::Scalar::all(0));
float max = 0;
// find maximum value
if (cutoff == 0.0) {
// without cutoff, just iterate through all values to find the largest
for (cv::MatIterator_<float> it = source.begin<float>();
it != source.end<float>(); ++it) {
float val = *it;
if (val > max) {
max = val;
}
}
} else {
// when a cutoff is specified, sort all the points by value and then
// specify the max so that <cutoff> values are larger than it
vector<float> sorted(source.cols*source.rows);
int i = 0;
for (cv::MatIterator_<float> it = source.begin<float>();
it != source.end<float>(); ++it, ++i) {
sorted[i] = *it;
}
std::sort(sorted.begin(), sorted.end());
max = sorted[(int)(source.cols*source.rows*(1.0-cutoff))];
cout << "A cutoff of " << cutoff << " resulted in a max value of " << max << endl;
}
cv::MatIterator_<float> src = source.begin<float>();
cv::MatIterator_<uchar> dst = result.begin<uchar>();
cv::MatIterator_<float> end = source.end<float>();
if (logarithm) {
// stretch values from 0 to max logarithmically over 0 to 255
// using the logarithm allows to represent smaller values with more
// precision and larger values with less
max = log(max+1);
for (; src != end; ++src, ++dst) {
float val = (log(*src+1)*255.0)/max;
if (val > 255)
*dst = 255;
else
*dst = (uchar)val;
}
} else {
// stretch values from 0 to max linearly over 0 to 255
for (; src != end; ++src, ++dst) {
float val = (*src*255.0)/max;
if (val > 255)
*dst = 255;
else
*dst = (uchar)val;
}
}
return result;
}
/*
* from grayscale image, create a binary image using a fixed threshold
*/
cv::Mat calculateThreshold(vector<vector<cv::Vec3f>> &segmented_points,
cv::Mat &img, vector<vector<vector<cv::Vec3f> > > extendedMap,
double thresh)
{
int i, j, idx;
cv::Mat res;
cv::threshold(img, res, thresh, 255, cv::THRESH_BINARY);
segmented_points.resize(2);
for (i = 0; i < res.rows; i++) {
for (j = 0; j < res.cols; j++) {
idx = res.at<uchar>(i,j);
if (idx != 0)
idx = 1;
segmented_points[idx].insert(segmented_points[idx].end(),
extendedMap[i][j].begin(),
extendedMap[i][j].end());
}
}
return res;
}
/*
* calculate the pyramid mean shift segmentation of the image
*/
cv::Mat calculatePyrMeanShift(vector<vector<cv::Vec3f>> &segmented_points,
cv::Mat &img, vector<vector<vector<cv::Vec3f> > > extendedMap,
int maxlevel, int radius)
{
int i, j, idx;
cv::Mat imgGray, res, tmp;
cvtColor(img, imgGray, CV_GRAY2BGR);
cv::pyrMeanShiftFiltering(imgGray, tmp, radius, radius, maxlevel);
cvtColor(tmp, res, CV_BGR2GRAY);
// some colors will be empty
// fill histogram first and then pick those entries that are not empty
vector<vector<cv::Vec3f>> histogram(256);
for (i = 0; i < res.rows; i++) {
for (j = 0; j < res.cols; j++) {
idx = res.at<uchar>(i,j);
histogram[idx].insert(histogram[idx].end(),
extendedMap[i][j].begin(),
extendedMap[i][j].end());
}
}
for (i = 0; i < 256; i++) {
if (!histogram[i].empty()) {
segmented_points.push_back(histogram[i]);
}
}
return res;
}
///TODO: need to pass *two* thresh params, see: http://bit.ly/WmFeub
cv::Mat calculatePyrSegmentation(vector<vector<cv::Vec3f>> &segmented_points,
cv::Mat &img, vector<vector<vector<cv::Vec3f> > > extendedMap,
double thresh1, double thresh2, int pyrlevels)
{
int i, j, idx;
int block_size = 1000;
IplImage ipl_img = img;
IplImage* ipl_original = &ipl_img;
IplImage* ipl_segmented = 0;
CvMemStorage* storage = cvCreateMemStorage(block_size);
CvSeq* comp = NULL;
// the following lines are required because the level must not be more
// than log2(min(width, height))
ipl_original->width &= -(1<<pyrlevels);
ipl_original->height &= -(1<<pyrlevels);
ipl_segmented = cvCloneImage( ipl_original );
// apply the pyramid segmentation algorithm
cvPyrSegmentation(ipl_original, ipl_segmented, storage, &comp, pyrlevels, thresh1+1, thresh2+1);
// mapping of color value to component id
map<int, int> mapping;
unsigned int segments = comp->total;
for (unsigned int cur_seg = 0; cur_seg < segments; ++cur_seg) {
CvConnectedComp* cc = (CvConnectedComp*) cvGetSeqElem(comp, cur_seg);
// since images are single-channel grayscale, only the first value is
// of interest
mapping.insert(pair<int, int>(cc->value.val[0], cur_seg));
}
segmented_points.resize(segments);
uchar *data = (uchar *)ipl_segmented->imageData;
int step = ipl_segmented->widthStep;
for (i = 0; i < ipl_segmented->height; i++) {
for (j = 0; j < ipl_segmented->width; j++) {
idx = mapping[data[i*step+j]];
segmented_points[idx].insert(segmented_points[idx].end(),
extendedMap[i][j].begin(),
extendedMap[i][j].end());
}
}
// clearing memory
cvReleaseMemStorage(&storage);
cv::Mat res(ipl_segmented);
return res;
}
/*
* calculate the adaptive threshold
*/
cv::Mat calculateAdaptiveThreshold(vector<vector<cv::Vec3f>> &segmented_points,
cv::Mat &img, vector<vector<vector<cv::Vec3f> > > extendedMap)
{
int i, j, idx;
cv::Mat res;
cv::adaptiveThreshold(img, res, 255, CV_ADAPTIVE_THRESH_MEAN_C, CV_THRESH_BINARY, 49, 5);
segmented_points.resize(2);
for (i = 0; i < res.rows; i++) {
for (j = 0; j < res.cols; j++) {
idx = res.at<uchar>(i,j);
if (idx != 0)
idx = 1;
segmented_points[idx].insert(segmented_points[idx].end(),
extendedMap[i][j].begin(),
extendedMap[i][j].end());
}
}
return res;
}
/*
* using a marker image, calculate the watershed segmentation
* a marker image can be created from the panorama retrieved by using the
* --dump-pano option
*/
cv::Mat calculateWatershed(vector<vector<cv::Vec3f>> &segmented_points,
string &marker, cv::Mat &img, vector<vector<vector<cv::Vec3f> > > extendedMap)
{
int i, j, idx;
cv::Mat markerMask = cv::imread(marker, 0);
vector<vector<cv::Point> > contours;
vector<cv::Vec4i> hierarchy;
cv::findContours(markerMask, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
if (contours.empty())
throw std::runtime_error("empty marker mask");
cv::Mat markers(markerMask.size(), CV_32S);
markers = cv::Scalar::all(0);
int compCount = 0;
for (int idx = 0; idx >= 0; idx = hierarchy[idx][0], compCount++ )
cv::drawContours(markers, contours, idx,
cv::Scalar::all(compCount+1), -1, 8, hierarchy, INT_MAX);
if (compCount == 0)
throw std::runtime_error("no component found");
cv::Mat imgGray;
cvtColor(img, imgGray, CV_GRAY2BGR);
cv::watershed(imgGray, markers);
segmented_points.resize(compCount);
for (i = 0; i < markers.rows; i++) {
for (j = 0; j < markers.cols; j++) {
idx = markers.at<int>(i,j);
if (idx > 0 && idx <= compCount) {
segmented_points[idx-1].insert(segmented_points[idx-1].end(),
extendedMap[i][j].begin(),
extendedMap[i][j].end());
}
}
}
return markers;
}
/*
* given a vector of segmented 3d points, write them out as uos files
*/
void write3dfiles(vector<vector<cv::Vec3f>> &segmented_points, string &segdir)
{
unsigned int i;
vector<ofstream*> outfiles(segmented_points.size());
for (i = 0; i < segmented_points.size(); i++) {
std::stringstream outfilename;
outfilename << segdir << "/scan" << std::setw(3) << std::setfill('0') << i << ".3d";
outfiles[i] = new ofstream(outfilename.str());
}
for (i = 0; i < segmented_points.size(); i++) {
for (vector<cv::Vec3f>::iterator it=segmented_points[i].begin() ;
it < segmented_points[i].end();
it++) {
(*(outfiles[i])) << (*it)[0] << " " << (*it)[1] << " " << (*it)[2] << endl;
}
}
for (i = 0; i < segmented_points.size(); i++) {
outfiles[i]->close();
}
}
// write .pose files
// .frames files can later be generated from them using ./bin/pose2frames
void writeposefiles(int num, string &segdir, const double* rPos, const double* rPosTheta)
{
for (int i = 0; i < num; i++) {
std::stringstream posefilename;
posefilename << segdir << "/scan" << std::setw(3) << std::setfill('0') << i << ".pose";
ofstream posefile(posefilename.str());
posefile << rPos[0] << " " << rPos[1] << " " << rPos[2] << endl;
posefile << deg(rPosTheta[0]) << " "
<< deg(rPosTheta[1]) << " "
<< deg(rPosTheta[2]) << endl;
posefile.close();
}
}
void createdirectory(string segdir)
{
int success = mkdir(segdir.c_str(), S_IRWXU|S_IRWXG|S_IRWXO);
if (success == 0 || errno == EEXIST) {
cout << "Writing segmentations to " << segdir << endl;
} else {
cerr << "Creating directory " << segdir << " failed" << endl;
exit(1);
}
}
int main(int argc, char **argv)
{
// commandline arguments
int start, end;
bool scanserver;
image_type itype;
int width, height;
int maxDist, minDist;
int nImages, pParam;
fbr::projection_method ptype;
bool logarithm;
float cutoff;
string dir;
IOType iotype;
segment_method stype;
string marker;
bool dump_pano, dump_seg;
double thresh;
int maxlevel, radius;
double pyrlinks, pyrcluster;
int pyrlevels;
parse_options(argc, argv, start, end, scanserver, itype, width, height,
ptype, dir, iotype, maxDist, minDist, nImages, pParam, logarithm,
cutoff, stype, marker, dump_pano, dump_seg, thresh, maxlevel,
radius, pyrlinks, pyrcluster, pyrlevels);
Scan::openDirectory(scanserver, dir, iotype, start, end);
if(Scan::allScans.size() == 0) {
cerr << "No scans found. Did you use the correct format?" << endl;
exit(-1);
}
cv::Mat img, res;
string segdir;
for(ScanVector::iterator it = Scan::allScans.begin(); it != Scan::allScans.end(); ++it) {
Scan* scan = *it;
// apply optional filtering
scan->setRangeFilter(maxDist, minDist);
// create target directory
segdir = dir + "segmented" + scan->getIdentifier();
createdirectory(segdir);
// create panorama
fbr::panorama fPanorama(width, height, ptype, nImages, pParam, fbr::EXTENDED);
fPanorama.createPanorama(scan2mat(scan));
if (itype == M_RANGE) {
// the range image has to be converted from float to uchar
img = fPanorama.getRangeImage();
img = float2uchar(img, logarithm, cutoff);
} else {
// intensity image
img = fPanorama.getReflectanceImage();
}
// output panorama image
if (dump_pano)
imwrite(segdir+"/panorama.png", img);
// will store the result of the segmentation
vector<vector<cv::Vec3f>> segmented_points;
if (stype == THRESHOLD) {
res = calculateThreshold(segmented_points, img, fPanorama.getExtendedMap(), thresh);
} else if (stype == PYR_MEAN_SHIFT) {
res = calculatePyrMeanShift(segmented_points, img, fPanorama.getExtendedMap(),
maxlevel, radius);
} else if (stype == PYR_SEGMENTATION) {
res = calculatePyrSegmentation(segmented_points, img, fPanorama.getExtendedMap(), pyrlinks, pyrcluster, pyrlevels);
} else if (stype == ADAPTIVE_THRESHOLD) {
res = calculateAdaptiveThreshold(segmented_points, img, fPanorama.getExtendedMap());
} else if (stype == WATERSHED) {
res = calculateWatershed(segmented_points, marker, img, fPanorama.getExtendedMap());
}
// output segmentation image
if (dump_seg)
imwrite(segdir+"/segmentation.png", res);
// write .3d and .pose files
write3dfiles(segmented_points, segdir);
writeposefiles(segmented_points.size(), segdir, scan->get_rPos(), scan->get_rPosTheta());
}
}