417 lines
16 KiB
Text
417 lines
16 KiB
Text
//----------------------------------------------------------------------
|
|
// File: bd_tree.cpp
|
|
// Programmer: David Mount
|
|
// Description: Basic methods for bd-trees.
|
|
// Last modified: 01/04/05 (Version 1.0)
|
|
//----------------------------------------------------------------------
|
|
// Copyright (c) 1997-2005 University of Maryland and Sunil Arya and
|
|
// David Mount. All Rights Reserved.
|
|
//
|
|
// This software and related documentation is part of the Approximate
|
|
// Nearest Neighbor Library (ANN). This software is provided under
|
|
// the provisions of the Lesser GNU Public License (LGPL). See the
|
|
// file ../ReadMe.txt for further information.
|
|
//
|
|
// The University of Maryland (U.M.) and the authors make no
|
|
// representations about the suitability or fitness of this software for
|
|
// any purpose. It is provided "as is" without express or implied
|
|
// warranty.
|
|
//----------------------------------------------------------------------
|
|
// History:
|
|
// Revision 0.1 03/04/98
|
|
// Initial release
|
|
// Revision l.0 04/01/05
|
|
// Fixed centroid shrink threshold condition to depend on the
|
|
// dimension.
|
|
// Moved dump routine to kd_dump.cpp.
|
|
//----------------------------------------------------------------------
|
|
|
|
#include "bd_tree.h" // bd-tree declarations
|
|
#include "kd_util.h" // kd-tree utilities
|
|
#include "kd_split.h" // kd-tree splitting rules
|
|
|
|
#include <ANN/ANNperf.h> // performance evaluation
|
|
|
|
//----------------------------------------------------------------------
|
|
// Printing a bd-tree
|
|
// These routines print a bd-tree. See the analogous procedure
|
|
// in kd_tree.cpp for more information.
|
|
//----------------------------------------------------------------------
|
|
|
|
void ANNbd_shrink::print( // print shrinking node
|
|
int level, // depth of node in tree
|
|
ostream &out) // output stream
|
|
{
|
|
child[ANN_OUT]->print(level+1, out); // print out-child
|
|
|
|
out << " ";
|
|
for (int i = 0; i < level; i++) // print indentation
|
|
out << "..";
|
|
out << "Shrink";
|
|
for (int j = 0; j < n_bnds; j++) { // print sides, 2 per line
|
|
if (j % 2 == 0) {
|
|
out << "\n"; // newline and indentation
|
|
for (int i = 0; i < level+2; i++) out << " ";
|
|
}
|
|
out << " ([" << bnds[j].cd << "]"
|
|
<< (bnds[j].sd > 0 ? ">=" : "< ")
|
|
<< bnds[j].cv << ")";
|
|
}
|
|
out << "\n";
|
|
|
|
child[ANN_IN]->print(level+1, out); // print in-child
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
// kd_tree statistics utility (for performance evaluation)
|
|
// This routine computes various statistics information for
|
|
// shrinking nodes. See file kd_tree.cpp for more information.
|
|
//----------------------------------------------------------------------
|
|
|
|
void ANNbd_shrink::getStats( // get subtree statistics
|
|
int dim, // dimension of space
|
|
ANNkdStats &st, // stats (modified)
|
|
ANNorthRect &bnd_box) // bounding box
|
|
{
|
|
ANNkdStats ch_stats; // stats for children
|
|
ANNorthRect inner_box(dim); // inner box of shrink
|
|
|
|
annBnds2Box(bnd_box, // enclosing box
|
|
dim, // dimension
|
|
n_bnds, // number of bounds
|
|
bnds, // bounds array
|
|
inner_box); // inner box (modified)
|
|
// get stats for inner child
|
|
ch_stats.reset(); // reset
|
|
child[ANN_IN]->getStats(dim, ch_stats, inner_box);
|
|
st.merge(ch_stats); // merge them
|
|
// get stats for outer child
|
|
ch_stats.reset(); // reset
|
|
child[ANN_OUT]->getStats(dim, ch_stats, bnd_box);
|
|
st.merge(ch_stats); // merge them
|
|
|
|
st.depth++; // increment depth
|
|
st.n_shr++; // increment number of shrinks
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
// bd-tree constructor
|
|
// This is the main constructor for bd-trees given a set of points.
|
|
// It first builds a skeleton kd-tree as a basis, then computes the
|
|
// bounding box of the data points, and then invokes rbd_tree() to
|
|
// actually build the tree, passing it the appropriate splitting
|
|
// and shrinking information.
|
|
//----------------------------------------------------------------------
|
|
|
|
ANNkd_ptr rbd_tree( // recursive construction of bd-tree
|
|
ANNpointArray pa, // point array
|
|
ANNidxArray pidx, // point indices to store in subtree
|
|
int n, // number of points
|
|
int dim, // dimension of space
|
|
int bsp, // bucket space
|
|
ANNorthRect &bnd_box, // bounding box for current node
|
|
ANNkd_splitter splitter, // splitting routine
|
|
ANNshrinkRule shrink); // shrinking rule
|
|
|
|
ANNbd_tree::ANNbd_tree( // construct from point array
|
|
ANNpointArray pa, // point array (with at least n pts)
|
|
int n, // number of points
|
|
int dd, // dimension
|
|
int bs, // bucket size
|
|
ANNsplitRule split, // splitting rule
|
|
ANNshrinkRule shrink) // shrinking rule
|
|
: ANNkd_tree(n, dd, bs) // build skeleton base tree
|
|
{
|
|
pts = pa; // where the points are
|
|
if (n == 0) return; // no points--no sweat
|
|
|
|
ANNorthRect bnd_box(dd); // bounding box for points
|
|
// construct bounding rectangle
|
|
annEnclRect(pa, pidx, n, dd, bnd_box);
|
|
// copy to tree structure
|
|
bnd_box_lo = annCopyPt(dd, bnd_box.lo);
|
|
bnd_box_hi = annCopyPt(dd, bnd_box.hi);
|
|
|
|
switch (split) { // build by rule
|
|
case ANN_KD_STD: // standard kd-splitting rule
|
|
root = rbd_tree(pa, pidx, n, dd, bs, bnd_box, kd_split, shrink);
|
|
break;
|
|
case ANN_KD_MIDPT: // midpoint split
|
|
root = rbd_tree(pa, pidx, n, dd, bs, bnd_box, midpt_split, shrink);
|
|
break;
|
|
case ANN_KD_SUGGEST: // best (in our opinion)
|
|
case ANN_KD_SL_MIDPT: // sliding midpoint split
|
|
root = rbd_tree(pa, pidx, n, dd, bs, bnd_box, sl_midpt_split, shrink);
|
|
break;
|
|
case ANN_KD_FAIR: // fair split
|
|
root = rbd_tree(pa, pidx, n, dd, bs, bnd_box, fair_split, shrink);
|
|
break;
|
|
case ANN_KD_SL_FAIR: // sliding fair split
|
|
root = rbd_tree(pa, pidx, n, dd, bs,
|
|
bnd_box, sl_fair_split, shrink);
|
|
break;
|
|
default:
|
|
annError("Illegal splitting method", ANNabort);
|
|
}
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
// Shrinking rules
|
|
//----------------------------------------------------------------------
|
|
|
|
enum ANNdecomp {SPLIT, SHRINK}; // decomposition methods
|
|
|
|
//----------------------------------------------------------------------
|
|
// trySimpleShrink - Attempt a simple shrink
|
|
//
|
|
// We compute the tight bounding box of the points, and compute
|
|
// the 2*dim ``gaps'' between the sides of the tight box and the
|
|
// bounding box. If any of the gaps is large enough relative to
|
|
// the longest side of the tight bounding box, then we shrink
|
|
// all sides whose gaps are large enough. (The reason for
|
|
// comparing against the tight bounding box, is that after
|
|
// shrinking the longest box size will decrease, and if we use
|
|
// the standard bounding box, we may decide to shrink twice in
|
|
// a row. Since the tight box is fixed, we cannot shrink twice
|
|
// consecutively.)
|
|
//----------------------------------------------------------------------
|
|
const float BD_GAP_THRESH = 0.5; // gap threshold (must be < 1)
|
|
const int BD_CT_THRESH = 2; // min number of shrink sides
|
|
|
|
ANNdecomp trySimpleShrink( // try a simple shrink
|
|
ANNpointArray pa, // point array
|
|
ANNidxArray pidx, // point indices to store in subtree
|
|
int n, // number of points
|
|
int dim, // dimension of space
|
|
const ANNorthRect &bnd_box, // current bounding box
|
|
ANNorthRect &inner_box) // inner box if shrinking (returned)
|
|
{
|
|
int i;
|
|
// compute tight bounding box
|
|
annEnclRect(pa, pidx, n, dim, inner_box);
|
|
|
|
ANNcoord max_length = 0; // find longest box side
|
|
for (i = 0; i < dim; i++) {
|
|
ANNcoord length = inner_box.hi[i] - inner_box.lo[i];
|
|
if (length > max_length) {
|
|
max_length = length;
|
|
}
|
|
}
|
|
|
|
int shrink_ct = 0; // number of sides we shrunk
|
|
for (i = 0; i < dim; i++) { // select which sides to shrink
|
|
// gap between boxes
|
|
ANNcoord gap_hi = bnd_box.hi[i] - inner_box.hi[i];
|
|
// big enough gap to shrink?
|
|
if (gap_hi < max_length*BD_GAP_THRESH)
|
|
inner_box.hi[i] = bnd_box.hi[i]; // no - expand
|
|
else shrink_ct++; // yes - shrink this side
|
|
|
|
// repeat for high side
|
|
ANNcoord gap_lo = inner_box.lo[i] - bnd_box.lo[i];
|
|
if (gap_lo < max_length*BD_GAP_THRESH)
|
|
inner_box.lo[i] = bnd_box.lo[i]; // no - expand
|
|
else shrink_ct++; // yes - shrink this side
|
|
}
|
|
|
|
if (shrink_ct >= BD_CT_THRESH) // did we shrink enough sides?
|
|
return SHRINK;
|
|
else return SPLIT;
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
// tryCentroidShrink - Attempt a centroid shrink
|
|
//
|
|
// We repeatedly apply the splitting rule, always to the larger subset
|
|
// of points, until the number of points decreases by the constant
|
|
// fraction BD_FRACTION. If this takes more than dim*BD_MAX_SPLIT_FAC
|
|
// splits for this to happen, then we shrink to the final inner box
|
|
// Otherwise we split.
|
|
//----------------------------------------------------------------------
|
|
|
|
const float BD_MAX_SPLIT_FAC = 0.5; // maximum number of splits allowed
|
|
const float BD_FRACTION = 0.5; // ...to reduce points by this fraction
|
|
// ...This must be < 1.
|
|
|
|
ANNdecomp tryCentroidShrink( // try a centroid shrink
|
|
ANNpointArray pa, // point array
|
|
ANNidxArray pidx, // point indices to store in subtree
|
|
int n, // number of points
|
|
int dim, // dimension of space
|
|
const ANNorthRect &bnd_box, // current bounding box
|
|
ANNkd_splitter splitter, // splitting procedure
|
|
ANNorthRect &inner_box) // inner box if shrinking (returned)
|
|
{
|
|
int n_sub = n; // number of points in subset
|
|
int n_goal = (int) (n*BD_FRACTION); // number of point in goal
|
|
int n_splits = 0; // number of splits needed
|
|
// initialize inner box to bounding box
|
|
annAssignRect(dim, inner_box, bnd_box);
|
|
|
|
while (n_sub > n_goal) { // keep splitting until goal reached
|
|
int cd; // cut dim from splitter (ignored)
|
|
ANNcoord cv; // cut value from splitter (ignored)
|
|
int n_lo; // number of points on low side
|
|
// invoke splitting procedure
|
|
(*splitter)(pa, pidx, inner_box, n_sub, dim, cd, cv, n_lo);
|
|
n_splits++; // increment split count
|
|
|
|
if (n_lo >= n_sub/2) { // most points on low side
|
|
inner_box.hi[cd] = cv; // collapse high side
|
|
n_sub = n_lo; // recurse on lower points
|
|
}
|
|
else { // most points on high side
|
|
inner_box.lo[cd] = cv; // collapse low side
|
|
pidx += n_lo; // recurse on higher points
|
|
n_sub -= n_lo;
|
|
}
|
|
}
|
|
if (n_splits > dim*BD_MAX_SPLIT_FAC)// took too many splits
|
|
return SHRINK; // shrink to final subset
|
|
else
|
|
return SPLIT;
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
// selectDecomp - select which decomposition to use
|
|
//----------------------------------------------------------------------
|
|
|
|
ANNdecomp selectDecomp( // select decomposition method
|
|
ANNpointArray pa, // point array
|
|
ANNidxArray pidx, // point indices to store in subtree
|
|
int n, // number of points
|
|
int dim, // dimension of space
|
|
const ANNorthRect &bnd_box, // current bounding box
|
|
ANNkd_splitter splitter, // splitting procedure
|
|
ANNshrinkRule shrink, // shrinking rule
|
|
ANNorthRect &inner_box) // inner box if shrinking (returned)
|
|
{
|
|
ANNdecomp decomp = SPLIT; // decomposition
|
|
|
|
switch (shrink) { // check shrinking rule
|
|
case ANN_BD_NONE: // no shrinking allowed
|
|
decomp = SPLIT;
|
|
break;
|
|
case ANN_BD_SUGGEST: // author's suggestion
|
|
case ANN_BD_SIMPLE: // simple shrink
|
|
decomp = trySimpleShrink(
|
|
pa, pidx, // points and indices
|
|
n, dim, // number of points and dimension
|
|
bnd_box, // current bounding box
|
|
inner_box); // inner box if shrinking (returned)
|
|
break;
|
|
case ANN_BD_CENTROID: // centroid shrink
|
|
decomp = tryCentroidShrink(
|
|
pa, pidx, // points and indices
|
|
n, dim, // number of points and dimension
|
|
bnd_box, // current bounding box
|
|
splitter, // splitting procedure
|
|
inner_box); // inner box if shrinking (returned)
|
|
break;
|
|
default:
|
|
annError("Illegal shrinking rule", ANNabort);
|
|
}
|
|
return decomp;
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
// rbd_tree - recursive procedure to build a bd-tree
|
|
//
|
|
// This is analogous to rkd_tree, but for bd-trees. See the
|
|
// procedure rkd_tree() in kd_split.cpp for more information.
|
|
//
|
|
// If the number of points falls below the bucket size, then a
|
|
// leaf node is created for the points. Otherwise we invoke the
|
|
// procedure selectDecomp() which determines whether we are to
|
|
// split or shrink. If splitting is chosen, then we essentially
|
|
// do exactly as rkd_tree() would, and invoke the specified
|
|
// splitting procedure to the points. Otherwise, the selection
|
|
// procedure returns a bounding box, from which we extract the
|
|
// appropriate shrinking bounds, and create a shrinking node.
|
|
// Finally the points are subdivided, and the procedure is
|
|
// invoked recursively on the two subsets to form the children.
|
|
//----------------------------------------------------------------------
|
|
|
|
ANNkd_ptr rbd_tree( // recursive construction of bd-tree
|
|
ANNpointArray pa, // point array
|
|
ANNidxArray pidx, // point indices to store in subtree
|
|
int n, // number of points
|
|
int dim, // dimension of space
|
|
int bsp, // bucket space
|
|
ANNorthRect &bnd_box, // bounding box for current node
|
|
ANNkd_splitter splitter, // splitting routine
|
|
ANNshrinkRule shrink) // shrinking rule
|
|
{
|
|
ANNdecomp decomp; // decomposition method
|
|
|
|
ANNorthRect inner_box(dim); // inner box (if shrinking)
|
|
|
|
if (n <= bsp) { // n small, make a leaf node
|
|
if (n == 0) // empty leaf node
|
|
return KD_TRIVIAL; // return (canonical) empty leaf
|
|
else // construct the node and return
|
|
return new ANNkd_leaf(n, pidx);
|
|
}
|
|
|
|
decomp = selectDecomp( // select decomposition method
|
|
pa, pidx, // points and indices
|
|
n, dim, // number of points and dimension
|
|
bnd_box, // current bounding box
|
|
splitter, shrink, // splitting/shrinking methods
|
|
inner_box); // inner box if shrinking (returned)
|
|
|
|
if (decomp == SPLIT) { // split selected
|
|
int cd; // cutting dimension
|
|
ANNcoord cv; // cutting value
|
|
int n_lo; // number on low side of cut
|
|
// invoke splitting procedure
|
|
(*splitter)(pa, pidx, bnd_box, n, dim, cd, cv, n_lo);
|
|
|
|
ANNcoord lv = bnd_box.lo[cd]; // save bounds for cutting dimension
|
|
ANNcoord hv = bnd_box.hi[cd];
|
|
|
|
bnd_box.hi[cd] = cv; // modify bounds for left subtree
|
|
ANNkd_ptr lo = rbd_tree( // build left subtree
|
|
pa, pidx, n_lo, // ...from pidx[0..n_lo-1]
|
|
dim, bsp, bnd_box, splitter, shrink);
|
|
bnd_box.hi[cd] = hv; // restore bounds
|
|
|
|
bnd_box.lo[cd] = cv; // modify bounds for right subtree
|
|
ANNkd_ptr hi = rbd_tree( // build right subtree
|
|
pa, pidx + n_lo, n-n_lo,// ...from pidx[n_lo..n-1]
|
|
dim, bsp, bnd_box, splitter, shrink);
|
|
bnd_box.lo[cd] = lv; // restore bounds
|
|
// create the splitting node
|
|
return new ANNkd_split(cd, cv, lv, hv, lo, hi);
|
|
}
|
|
else { // shrink selected
|
|
int n_in; // number of points in box
|
|
int n_bnds; // number of bounding sides
|
|
|
|
annBoxSplit( // split points around inner box
|
|
pa, // points to split
|
|
pidx, // point indices
|
|
n, // number of points
|
|
dim, // dimension
|
|
inner_box, // inner box
|
|
n_in); // number of points inside (returned)
|
|
|
|
ANNkd_ptr in = rbd_tree( // build inner subtree pidx[0..n_in-1]
|
|
pa, pidx, n_in, dim, bsp, inner_box, splitter, shrink);
|
|
ANNkd_ptr out = rbd_tree( // build outer subtree pidx[n_in..n]
|
|
pa, pidx+n_in, n - n_in, dim, bsp, bnd_box, splitter, shrink);
|
|
|
|
ANNorthHSArray bnds = NULL; // bounds (alloc in Box2Bnds and
|
|
// ...freed in bd_shrink destroyer)
|
|
|
|
annBox2Bnds( // convert inner box to bounds
|
|
inner_box, // inner box
|
|
bnd_box, // enclosing box
|
|
dim, // dimension
|
|
n_bnds, // number of bounds (returned)
|
|
bnds); // bounds array (modified)
|
|
|
|
// return shrinking node
|
|
return new ANNbd_shrink(n_bnds, bnds, in, out);
|
|
}
|
|
}
|