210 lines
8.5 KiB
Text
210 lines
8.5 KiB
Text
//----------------------------------------------------------------------
|
|
// File: kd_search.cpp
|
|
// Programmer: Sunil Arya and David Mount
|
|
// Description: Standard kd-tree search
|
|
// Last modified: 01/04/05 (Version 1.0)
|
|
//----------------------------------------------------------------------
|
|
// Copyright (c) 1997-2005 University of Maryland and Sunil Arya and
|
|
// David Mount. All Rights Reserved.
|
|
//
|
|
// This software and related documentation is part of the Approximate
|
|
// Nearest Neighbor Library (ANN). This software is provided under
|
|
// the provisions of the Lesser GNU Public License (LGPL). See the
|
|
// file ../ReadMe.txt for further information.
|
|
//
|
|
// The University of Maryland (U.M.) and the authors make no
|
|
// representations about the suitability or fitness of this software for
|
|
// any purpose. It is provided "as is" without express or implied
|
|
// warranty.
|
|
//----------------------------------------------------------------------
|
|
// History:
|
|
// Revision 0.1 03/04/98
|
|
// Initial release
|
|
// Revision 1.0 04/01/05
|
|
// Changed names LO, HI to ANN_LO, ANN_HI
|
|
//----------------------------------------------------------------------
|
|
|
|
#include "kd_search.h" // kd-search declarations
|
|
|
|
//----------------------------------------------------------------------
|
|
// Approximate nearest neighbor searching by kd-tree search
|
|
// The kd-tree is searched for an approximate nearest neighbor.
|
|
// The point is returned through one of the arguments, and the
|
|
// distance returned is the squared distance to this point.
|
|
//
|
|
// The method used for searching the kd-tree is an approximate
|
|
// adaptation of the search algorithm described by Friedman,
|
|
// Bentley, and Finkel, ``An algorithm for finding best matches
|
|
// in logarithmic expected time,'' ACM Transactions on Mathematical
|
|
// Software, 3(3):209-226, 1977).
|
|
//
|
|
// The algorithm operates recursively. When first encountering a
|
|
// node of the kd-tree we first visit the child which is closest to
|
|
// the query point. On return, we decide whether we want to visit
|
|
// the other child. If the box containing the other child exceeds
|
|
// 1/(1+eps) times the current best distance, then we skip it (since
|
|
// any point found in this child cannot be closer to the query point
|
|
// by more than this factor.) Otherwise, we visit it recursively.
|
|
// The distance between a box and the query point is computed exactly
|
|
// (not approximated as is often done in kd-tree), using incremental
|
|
// distance updates, as described by Arya and Mount in ``Algorithms
|
|
// for fast vector quantization,'' Proc. of DCC '93: Data Compression
|
|
// Conference, eds. J. A. Storer and M. Cohn, IEEE Press, 1993,
|
|
// 381-390.
|
|
//
|
|
// The main entry points is annkSearch() which sets things up and
|
|
// then call the recursive routine ann_search(). This is a recursive
|
|
// routine which performs the processing for one node in the kd-tree.
|
|
// There are two versions of this virtual procedure, one for splitting
|
|
// nodes and one for leaves. When a splitting node is visited, we
|
|
// determine which child to visit first (the closer one), and visit
|
|
// the other child on return. When a leaf is visited, we compute
|
|
// the distances to the points in the buckets, and update information
|
|
// on the closest points.
|
|
//
|
|
// Some trickery is used to incrementally update the distance from
|
|
// a kd-tree rectangle to the query point. This comes about from
|
|
// the fact that which each successive split, only one component
|
|
// (along the dimension that is split) of the squared distance to
|
|
// the child rectangle is different from the squared distance to
|
|
// the parent rectangle.
|
|
//----------------------------------------------------------------------
|
|
|
|
//----------------------------------------------------------------------
|
|
// To keep argument lists short, a number of global variables
|
|
// are maintained which are common to all the recursive calls.
|
|
// These are given below.
|
|
//----------------------------------------------------------------------
|
|
|
|
int ANNkdDim; // dimension of space
|
|
ANNpoint ANNkdQ; // query point
|
|
double ANNkdMaxErr; // max tolerable squared error
|
|
ANNpointArray ANNkdPts; // the points
|
|
ANNmin_k *ANNkdPointMK; // set of k closest points
|
|
|
|
//----------------------------------------------------------------------
|
|
// annkSearch - search for the k nearest neighbors
|
|
//----------------------------------------------------------------------
|
|
|
|
void ANNkd_tree::annkSearch(
|
|
ANNpoint q, // the query point
|
|
int k, // number of near neighbors to return
|
|
ANNidxArray nn_idx, // nearest neighbor indices (returned)
|
|
ANNdistArray dd, // the approximate nearest neighbor
|
|
double eps) // the error bound
|
|
{
|
|
|
|
ANNkdDim = dim; // copy arguments to static equivs
|
|
ANNkdQ = q;
|
|
ANNkdPts = pts;
|
|
ANNptsVisited = 0; // initialize count of points visited
|
|
|
|
if (k > n_pts) { // too many near neighbors?
|
|
annError("Requesting more near neighbors than data points", ANNabort);
|
|
}
|
|
|
|
ANNkdMaxErr = ANN_POW(1.0 + eps);
|
|
ANN_FLOP(2) // increment floating op count
|
|
|
|
ANNkdPointMK = new ANNmin_k(k); // create set for closest k points
|
|
// search starting at the root
|
|
root->ann_search(annBoxDistance(q, bnd_box_lo, bnd_box_hi, dim));
|
|
|
|
for (int i = 0; i < k; i++) { // extract the k-th closest points
|
|
dd[i] = ANNkdPointMK->ith_smallest_key(i);
|
|
nn_idx[i] = ANNkdPointMK->ith_smallest_info(i);
|
|
}
|
|
delete ANNkdPointMK; // deallocate closest point set
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
// kd_split::ann_search - search a splitting node
|
|
//----------------------------------------------------------------------
|
|
|
|
void ANNkd_split::ann_search(ANNdist box_dist)
|
|
{
|
|
// check dist calc term condition
|
|
if (ANNmaxPtsVisited != 0 && ANNptsVisited > ANNmaxPtsVisited) return;
|
|
|
|
// distance to cutting plane
|
|
ANNcoord cut_diff = ANNkdQ[cut_dim] - cut_val;
|
|
|
|
if (cut_diff < 0) { // left of cutting plane
|
|
child[ANN_LO]->ann_search(box_dist);// visit closer child first
|
|
|
|
ANNcoord box_diff = cd_bnds[ANN_LO] - ANNkdQ[cut_dim];
|
|
if (box_diff < 0) // within bounds - ignore
|
|
box_diff = 0;
|
|
// distance to further box
|
|
box_dist = (ANNdist) ANN_SUM(box_dist,
|
|
ANN_DIFF(ANN_POW(box_diff), ANN_POW(cut_diff)));
|
|
|
|
// visit further child if close enough
|
|
if (box_dist * ANNkdMaxErr < ANNkdPointMK->max_key())
|
|
child[ANN_HI]->ann_search(box_dist);
|
|
|
|
}
|
|
else { // right of cutting plane
|
|
child[ANN_HI]->ann_search(box_dist);// visit closer child first
|
|
|
|
ANNcoord box_diff = ANNkdQ[cut_dim] - cd_bnds[ANN_HI];
|
|
if (box_diff < 0) // within bounds - ignore
|
|
box_diff = 0;
|
|
// distance to further box
|
|
box_dist = (ANNdist) ANN_SUM(box_dist,
|
|
ANN_DIFF(ANN_POW(box_diff), ANN_POW(cut_diff)));
|
|
|
|
// visit further child if close enough
|
|
if (box_dist * ANNkdMaxErr < ANNkdPointMK->max_key())
|
|
child[ANN_LO]->ann_search(box_dist);
|
|
|
|
}
|
|
ANN_FLOP(10) // increment floating ops
|
|
ANN_SPL(1) // one more splitting node visited
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
// kd_leaf::ann_search - search points in a leaf node
|
|
// Note: The unreadability of this code is the result of
|
|
// some fine tuning to replace indexing by pointer operations.
|
|
//----------------------------------------------------------------------
|
|
|
|
void ANNkd_leaf::ann_search(ANNdist box_dist)
|
|
{
|
|
register ANNdist dist; // distance to data point
|
|
register ANNcoord* pp; // data coordinate pointer
|
|
register ANNcoord* qq; // query coordinate pointer
|
|
register ANNdist min_dist; // distance to k-th closest point
|
|
register ANNcoord t;
|
|
register int d;
|
|
|
|
min_dist = ANNkdPointMK->max_key(); // k-th smallest distance so far
|
|
|
|
for (int i = 0; i < n_pts; i++) { // check points in bucket
|
|
|
|
pp = ANNkdPts[bkt[i]]; // first coord of next data point
|
|
qq = ANNkdQ; // first coord of query point
|
|
dist = 0;
|
|
|
|
for(d = 0; d < ANNkdDim; d++) {
|
|
ANN_COORD(1) // one more coordinate hit
|
|
ANN_FLOP(4) // increment floating ops
|
|
|
|
t = *(qq++) - *(pp++); // compute length and adv coordinate
|
|
// exceeds dist to k-th smallest?
|
|
if( (dist = ANN_SUM(dist, ANN_POW(t))) > min_dist) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (d >= ANNkdDim && // among the k best?
|
|
(ANN_ALLOW_SELF_MATCH || dist!=0)) { // and no self-match problem
|
|
// add it to the list
|
|
ANNkdPointMK->insert(dist, bkt[i]);
|
|
min_dist = ANNkdPointMK->max_key();
|
|
}
|
|
}
|
|
ANN_LEAF(1) // one more leaf node visited
|
|
ANN_PTS(n_pts) // increment points visited
|
|
ANNptsVisited += n_pts; // increment number of points visited
|
|
}
|