#include #include #include #include #include #include #include using namespace std; using namespace cv; enum {INTERACTIVE_MODE, PRESPECIFIED_MODE}; #define KEY_ESCAPE 1048603 #define KEY_SPACE 1048608 #define KEY_CLOSE_WINDOW -1 #define COUNT_SQUARES_X 4 #define COUNT_SQUARES_Y 6 int main(int argc, char** argv) { int user_mode; int specified_boards; if (argc > 2) cerr << "Usage: ./calibrate [number of frames]\n"; else if (argc == 1) { user_mode = INTERACTIVE_MODE; cout << "Camera calibration using interactive behavior. Press SPACE to grab frame, ESC to quit.\n"; } else { user_mode = PRESPECIFIED_MODE; stringstream ss; ss << argv[1]; ss >> specified_boards; cout << "Camera calibration using " << specified_boards << " frames.\n"; } VideoCapture capture(0); // open the default camera if (!capture.isOpened()) // check if opening camera stream succeeded { cerr << "Camera could not be found. Exiting.\n"; return -1; } // set frame width and height by hand, defaults to 160x120 capture.set (CV_CAP_PROP_FRAME_WIDTH, 640); capture.set (CV_CAP_PROP_FRAME_HEIGHT, 480); // show camera image in a separate window namedWindow("Camera Image", CV_WINDOW_KEEPRATIO); // store object points (world coords) and image points (image coords) for use in calibrateCamera vector< vector > object_points; vector< vector > image_points; /// current frame, its grayscale counterpart and storage for the first frame Mat frame, gray_frame, first_frame; // flag for determining whether pattern was detected in at least one of the camera grabs bool acquired_samples = false; // loop indefinitely and keep frame counter for(int count_frames = 0; ; ++count_frames) { capture >> frame; // get a new frame from camera cvtColor(frame, gray_frame, CV_BGR2GRAY); // convert current frame to grayscale imshow("Camera Image", frame); // update camera image int key_pressed = waitKey(0); // get user key press if (key_pressed == KEY_CLOSE_WINDOW || key_pressed == KEY_ESCAPE) break; if (user_mode == INTERACTIVE_MODE && key_pressed == KEY_SPACE) { Size pattern_size(COUNT_SQUARES_X, COUNT_SQUARES_Y); // number of squares in the pattern, a.k.a, interior number of corners vector corners; // storage for the detected corners in findChessboardConrners bool pattern_found = findChessboardCorners( gray_frame, pattern_size, corners, CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE + CALIB_CB_FAST_CHECK); if (pattern_found) { if (count_frames == 0) first_frame = frame; // if corners are detected, they are further refined by calculating subpixel corners from the grayscale image // this iterative process terminates after the given number of iterations and error epsilon cornerSubPix(gray_frame, corners, Size(11, 11), Size(-1, -1), TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 100, 0.1)); // draw the detected corners for debugging purposes drawChessboardCorners(frame, pattern_size, Mat(corners), pattern_found); // show detected corners in a different window imshow("Detected pattern", frame); // build a grid of 3D points (z component is 0 because the pattern is in one plane) to fit the square pattern area (COUNT_SQUARES_X * COUNT_SQUARES_Y) vector< Point3f > pattern_points; for(int j = 0; j < COUNT_SQUARES_X * COUNT_SQUARES_Y; ++j) pattern_points.push_back(Point3f(j/COUNT_SQUARES_X, j%COUNT_SQUARES_X, 0.0f)); // populate image points with corners and object points with grid points image_points.push_back(corners); object_points.push_back(pattern_points); cout << "Frame " << count_frames << " grabbed.\n"; acquired_samples = true; } } } // if at least one video capture contains the pattern, perform calibration if (acquired_samples) { Mat intrinsic = Mat(3, 3, CV_32FC1); Mat distCoeffs; vector rvecs; vector tvecs; // perform calibration, obtain instrinsic parameters and distortion coefficients cout << "\nCalibrating...\n"; calibrateCamera(object_points, image_points, frame.size(), intrinsic, distCoeffs, rvecs, tvecs); /* Mat grab2 = imread("./data/grab2.jpg"), grab2_undistorted; Mat grab4 = imread("./data/grab4.jpg"), grab4_undistorted; undistort(grab2, grab2_undistorted, intrinsic, distCoeffs); undistort(grab4, grab4_undistorted, intrinsic, distCoeffs); imwrite("./data/grab2_undistorted.jpg", grab2_undistorted); imwrite("./data/grab4_undistorted.jpg", grab4_undistorted); */ Mat undistorted_frame; // apply the calibration transformation to the first frame and store image on disk undistort(first_frame, undistorted_frame, intrinsic, distCoeffs); imwrite("capture.jpg", first_frame); imwrite("undistorted_frame.jpg", undistorted_frame); cout << "Saved first frame to undistorted_frame.jpg\n"; cout << "Intrinsic parameters: \n" << intrinsic << "\n"; cout << "Distortion coefficients: \n" << distCoeffs << "\n"; } else { cerr << "No frames grabbed!\n"; } // the camera will be deinitialized automatically in VideoCapture destructor return 0; }