first commit
This commit is contained in:
commit
58e403a486
2 changed files with 283 additions and 0 deletions
160
cycles_functional.ml
Normal file
160
cycles_functional.ml
Normal file
|
@ -0,0 +1,160 @@
|
|||
|
||||
open Graph
|
||||
open ExtLib
|
||||
open ExtString
|
||||
|
||||
module G = Pack.Digraph
|
||||
|
||||
module SV = Set.Make(G.V)
|
||||
|
||||
let to_set l = List.fold_right SV.add l SV.empty ;;
|
||||
|
||||
let partition s w = snd(SV.partition (fun e -> e >= w) s);;
|
||||
|
||||
let print_set s =
|
||||
String.join " " (List.map (fun e ->
|
||||
string_of_int (G.V.label e)
|
||||
) (SV.elements s))
|
||||
;;
|
||||
|
||||
let extract_subgraph g s =
|
||||
let sg = G.create () in
|
||||
G.iter_edges (fun v1 v2 ->
|
||||
if SV.mem v1 s then G.add_vertex sg v1;
|
||||
if SV.mem v2 s then G.add_vertex sg v2;
|
||||
if SV.mem v1 s && SV.mem v2 s then
|
||||
G.add_edge sg v1 v2
|
||||
) g;
|
||||
sg
|
||||
;;
|
||||
|
||||
let stack_to_list s =
|
||||
let l = ref [] in
|
||||
Stack.iter (fun e -> l:= e::!l) s;
|
||||
!l
|
||||
;;
|
||||
|
||||
type block = {
|
||||
blocked : (G.V.t,bool) Hashtbl.t;
|
||||
notelem : (G.V.t,G.V.t list) Hashtbl.t
|
||||
}
|
||||
|
||||
let init_block g =
|
||||
let t = {
|
||||
blocked = Hashtbl.create 1023;
|
||||
notelem = Hashtbl.create 1023;
|
||||
} in
|
||||
G.iter_vertex (fun node ->
|
||||
Hashtbl.add t.blocked node false;
|
||||
Hashtbl.add t.notelem node [];
|
||||
) g;
|
||||
t
|
||||
;;
|
||||
|
||||
let get_notelem t n =
|
||||
Hashtbl.find t.notelem n
|
||||
;;
|
||||
|
||||
let rec unblock t n =
|
||||
Printf.eprintf "unblock %d\n" (G.V.label n);
|
||||
if Hashtbl.find t.blocked n then begin
|
||||
Hashtbl.replace t.blocked n false;
|
||||
let l = get_notelem t n in
|
||||
List.iter (unblock t) l;
|
||||
Hashtbl.replace t.notelem n []
|
||||
end
|
||||
;;
|
||||
|
||||
let block t n =
|
||||
Hashtbl.replace t.blocked n true
|
||||
;;
|
||||
|
||||
let is_bloked t n =
|
||||
Hashtbl.find t.blocked n
|
||||
;;
|
||||
|
||||
let find_all_cycles_johnson g =
|
||||
if not G.is_directed then
|
||||
assert false;
|
||||
|
||||
(* stack of nodes in current path *)
|
||||
let path = Stack.create () in
|
||||
|
||||
let rec circuit t result thisnode startnode component =
|
||||
|
||||
Stack.push thisnode path;
|
||||
block t thisnode;
|
||||
|
||||
let (closed,result) =
|
||||
G.fold_succ (fun nextnode (c,r) ->
|
||||
Printf.eprintf "startnode %d\n" (G.V.label startnode);
|
||||
Printf.eprintf "nextnode %d\n" (G.V.label nextnode);
|
||||
if G.V.equal nextnode startnode then begin
|
||||
Printf.eprintf "closed = true 1\n";
|
||||
(true,(Stack.copy path)::r)
|
||||
end else begin
|
||||
if not(is_bloked t nextnode) then
|
||||
circuit t r nextnode startnode component
|
||||
else
|
||||
(c,r)
|
||||
end
|
||||
) component thisnode (false,result)
|
||||
in
|
||||
if closed then begin
|
||||
Printf.eprintf "closed = true 3\n";
|
||||
unblock t thisnode
|
||||
end else
|
||||
G.iter_succ (fun nextnode ->
|
||||
let l = get_notelem t nextnode in
|
||||
if List.mem thisnode l then
|
||||
Hashtbl.replace t.notelem nextnode (thisnode::l)
|
||||
) component thisnode;
|
||||
|
||||
ignore(Stack.pop path);
|
||||
(closed,result)
|
||||
in
|
||||
|
||||
(* Johnson's algorithm requires some ordering of the nodes. *)
|
||||
let vertex_set = G.fold_vertex SV.add g SV.empty in
|
||||
Printf.eprintf "inital vertex set %s\n" (print_set vertex_set);
|
||||
SV.fold (fun s result ->
|
||||
(* Build the subgraph induced by s and following nodes in the ordering *)
|
||||
Printf.eprintf "selected element %d\n" (G.V.label s);
|
||||
let subset = SV.add s (partition vertex_set s) in
|
||||
Printf.eprintf "subset %s\n" (print_set subset);
|
||||
let subgraph = extract_subgraph g subset in
|
||||
|
||||
if G.nb_edges subgraph > 0 then begin
|
||||
(* Find the strongly connected component in the subgraph
|
||||
* that contains the least node according to the ordering *)
|
||||
let scc = G.Components.scc_list subgraph in
|
||||
let minnode = SV.min_elt subset in
|
||||
Printf.eprintf "minnode %d\n" (G.V.label minnode);
|
||||
let mincomp = List.find (fun l -> List.mem minnode l) scc in
|
||||
Printf.eprintf "mincomp %s\n" (print_set ((to_set mincomp)));
|
||||
|
||||
(* smallest node in the component according to the ordering *)
|
||||
let startnode = minnode in
|
||||
let component = extract_subgraph subgraph (to_set mincomp) in
|
||||
|
||||
G.dot_output component (Printf.sprintf "test-component%d.dot" (G.V.label s));
|
||||
|
||||
(* init the block table for this component *)
|
||||
let t = init_block component in
|
||||
|
||||
snd(circuit t result startnode startnode component);
|
||||
end else begin
|
||||
Printf.eprintf "No edges to consider\n";
|
||||
result
|
||||
end
|
||||
) vertex_set []
|
||||
;;
|
||||
|
||||
let g = G.Rand.graph ~v:5 ~e:10 () in
|
||||
G.dot_output g "test.dot";
|
||||
let ll = find_all_cycles_johnson g in
|
||||
List.iter (fun path ->
|
||||
let path = stack_to_list path in
|
||||
Printf.printf "path : %s\n"
|
||||
(String.join " " (List.map (fun e -> string_of_int (G.V.label e)) path))
|
||||
) ll
|
123
cycles_iter.ml
Normal file
123
cycles_iter.ml
Normal file
|
@ -0,0 +1,123 @@
|
|||
|
||||
open Graph
|
||||
open ExtLib
|
||||
open ExtString
|
||||
|
||||
module G = Pack.Digraph
|
||||
|
||||
let find_all_cycles_johnson g =
|
||||
if not G.is_directed then
|
||||
assert false;
|
||||
(* stack of nodes in current path *)
|
||||
let path = Stack.create () in
|
||||
(* vertex: blocked from search *)
|
||||
let blocked = Hashtbl.create 1023 in
|
||||
(* graph portions that yield no elementary circuit *)
|
||||
let b = Hashtbl.create 1023 in
|
||||
(* list to accumulate the circuits found *)
|
||||
let result = ref [] in
|
||||
|
||||
let rec circuit thisnode startnode component =
|
||||
let stack_to_list s =
|
||||
let l = ref [] in
|
||||
Stack.iter (fun e -> l:= e::!l) s;
|
||||
!l
|
||||
in
|
||||
|
||||
let rec unblock thisnode =
|
||||
Printf.eprintf "unblock %d\n" (G.V.label thisnode);
|
||||
if Hashtbl.find blocked thisnode then begin
|
||||
Hashtbl.replace blocked thisnode false;
|
||||
List.iter unblock (Hashtbl.find b thisnode);
|
||||
Hashtbl.replace b thisnode []
|
||||
end
|
||||
in
|
||||
let closed = ref false in
|
||||
Stack.push thisnode path;
|
||||
Hashtbl.replace blocked thisnode true;
|
||||
G.iter_succ (fun nextnode ->
|
||||
Printf.eprintf "startnode %d\n" (G.V.label startnode);
|
||||
Printf.eprintf "nextnode %d\n" (G.V.label nextnode);
|
||||
if G.V.equal nextnode startnode then begin
|
||||
result := ((stack_to_list path))::!result;
|
||||
closed := true;
|
||||
Printf.eprintf "closed = true 1\n";
|
||||
end else begin if not(Hashtbl.find blocked nextnode) then
|
||||
if circuit nextnode startnode component then begin
|
||||
closed := true;
|
||||
Printf.eprintf "closed = true 2\n";
|
||||
end
|
||||
end
|
||||
) component thisnode;
|
||||
if !closed then begin
|
||||
Printf.eprintf "closed = true 3\n";
|
||||
unblock thisnode
|
||||
end
|
||||
else
|
||||
G.iter_succ (fun nextnode ->
|
||||
if List.mem thisnode (Hashtbl.find b nextnode) then
|
||||
Hashtbl.replace b nextnode (thisnode::(Hashtbl.find b nextnode))
|
||||
) component thisnode;
|
||||
ignore(Stack.pop path);
|
||||
!closed
|
||||
in
|
||||
let module SV = Set.Make(G.V) in
|
||||
let subgraph_ g s =
|
||||
let sg = G.create () in
|
||||
G.iter_edges (fun v1 v2 ->
|
||||
if SV.mem v1 s then G.add_vertex sg v1;
|
||||
if SV.mem v2 s then G.add_vertex sg v2;
|
||||
if SV.mem v1 s && SV.mem v2 s then
|
||||
G.add_edge sg v1 v2
|
||||
) g;
|
||||
sg
|
||||
in
|
||||
(* Johnson's algorithm requires some ordering of the nodes.
|
||||
* They might not be sortable so we assign an arbitrary ordering.
|
||||
*)
|
||||
let to_set l = List.fold_right SV.add l SV.empty in
|
||||
let vertex_set = G.fold_vertex SV.add g SV.empty in
|
||||
let part s w = snd(SV.partition (fun e -> e >= w) s) in
|
||||
let print_set s =
|
||||
String.join " " (List.map (fun e ->
|
||||
string_of_int (G.V.label e)
|
||||
) (SV.elements s))
|
||||
in
|
||||
Printf.eprintf "inital set %s\n" (print_set vertex_set);
|
||||
SV.iter (fun s ->
|
||||
(* Build the subgraph induced by s and following nodes in the ordering *)
|
||||
Printf.eprintf "selected element %d\n" (G.V.label s);
|
||||
let subset = SV.add s (part vertex_set s) in
|
||||
Printf.eprintf "subset %s\n" (print_set subset);
|
||||
let subgraph = subgraph_ g subset in
|
||||
if G.nb_edges subgraph > 0 then begin
|
||||
let scc = G.Components.scc_list subgraph in
|
||||
(* Find the strongly connected component in the subgraph
|
||||
* that contains the least node according to the ordering *)
|
||||
let minnode = SV.min_elt subset in
|
||||
Printf.eprintf "minnode %d\n" (G.V.label minnode);
|
||||
let mincomp = List.find (fun l -> List.mem minnode l) scc in
|
||||
Printf.eprintf "mincomp %s\n" (print_set ((to_set mincomp)));
|
||||
(* smallest node in the component according to the ordering *)
|
||||
let startnode = minnode in
|
||||
let component = subgraph_ subgraph (to_set mincomp) in
|
||||
G.dot_output component (Printf.sprintf "test-component%d.dot" (G.V.label s));
|
||||
G.iter_vertex (fun node ->
|
||||
Hashtbl.add blocked node false;
|
||||
Hashtbl.add b node [];
|
||||
) component;
|
||||
ignore(circuit startnode startnode component);
|
||||
end else
|
||||
Printf.eprintf "No edges to consider\n"
|
||||
) vertex_set;
|
||||
|
||||
!result
|
||||
;;
|
||||
|
||||
let g = G.Rand.graph ~v:5 ~e:10 () in
|
||||
G.dot_output g "test.dot";
|
||||
let ll = find_all_cycles_johnson g in
|
||||
List.iter (fun path ->
|
||||
Printf.printf "path : %s\n"
|
||||
(String.join " " (List.map (fun e -> string_of_int (G.V.label e)) path))
|
||||
) ll
|
Loading…
Reference in a new issue