iterative and functional cycle code outputs correct results
This commit is contained in:
parent
054604d5cf
commit
fa78ca1a30
2 changed files with 92 additions and 106 deletions
|
@ -9,7 +9,7 @@ module SV = Set.Make(G.V)
|
||||||
|
|
||||||
let to_set l = List.fold_right SV.add l SV.empty ;;
|
let to_set l = List.fold_right SV.add l SV.empty ;;
|
||||||
|
|
||||||
let partition s w = snd(SV.partition (fun e -> e >= w) s);;
|
let partition s w = fst(SV.partition (fun e -> e >= w) s);;
|
||||||
|
|
||||||
let print_set s =
|
let print_set s =
|
||||||
String.join " " (List.map (fun e ->
|
String.join " " (List.map (fun e ->
|
||||||
|
@ -51,17 +51,11 @@ let init_block g =
|
||||||
t
|
t
|
||||||
;;
|
;;
|
||||||
|
|
||||||
let get_notelem t n =
|
|
||||||
Hashtbl.find t.notelem n
|
|
||||||
;;
|
|
||||||
|
|
||||||
let rec unblock t n =
|
let rec unblock t n =
|
||||||
Printf.eprintf "unblock %d\n" (G.V.label n);
|
|
||||||
if Hashtbl.find t.blocked n then begin
|
if Hashtbl.find t.blocked n then begin
|
||||||
Hashtbl.replace t.blocked n false;
|
Hashtbl.replace t.blocked n false;
|
||||||
let l = get_notelem t n in
|
List.iter (unblock t) (Hashtbl.find t.notelem n);
|
||||||
List.iter (unblock t) l;
|
Hashtbl.replace t.notelem n [];
|
||||||
Hashtbl.replace t.notelem n []
|
|
||||||
end
|
end
|
||||||
;;
|
;;
|
||||||
|
|
||||||
|
@ -69,10 +63,6 @@ let block t n =
|
||||||
Hashtbl.replace t.blocked n true
|
Hashtbl.replace t.blocked n true
|
||||||
;;
|
;;
|
||||||
|
|
||||||
let is_bloked t n =
|
|
||||||
Hashtbl.find t.blocked n
|
|
||||||
;;
|
|
||||||
|
|
||||||
let find_all_cycles_johnson g =
|
let find_all_cycles_johnson g =
|
||||||
if not G.is_directed then
|
if not G.is_directed then
|
||||||
assert false;
|
assert false;
|
||||||
|
@ -87,74 +77,74 @@ let find_all_cycles_johnson g =
|
||||||
|
|
||||||
let (closed,result) =
|
let (closed,result) =
|
||||||
G.fold_succ (fun nextnode (c,r) ->
|
G.fold_succ (fun nextnode (c,r) ->
|
||||||
Printf.eprintf "startnode %d\n" (G.V.label startnode);
|
|
||||||
Printf.eprintf "nextnode %d\n" (G.V.label nextnode);
|
|
||||||
if G.V.equal nextnode startnode then begin
|
if G.V.equal nextnode startnode then begin
|
||||||
Printf.eprintf "closed = true 1\n";
|
(true, (stack_to_list path)::r)
|
||||||
(true,(Stack.copy path)::r)
|
|
||||||
end else begin
|
end else begin
|
||||||
if not(is_bloked t nextnode) then
|
if not(Hashtbl.find t.blocked nextnode) then begin
|
||||||
circuit t r nextnode startnode component
|
let c2, r2 = circuit t r nextnode startnode component in
|
||||||
else
|
(c || c2, r2)
|
||||||
|
end else
|
||||||
(c,r)
|
(c,r)
|
||||||
end
|
end
|
||||||
) component thisnode (false,result)
|
) component thisnode (false,result)
|
||||||
in
|
in
|
||||||
if closed then begin
|
if closed then begin
|
||||||
Printf.eprintf "closed = true 3\n";
|
|
||||||
unblock t thisnode
|
unblock t thisnode
|
||||||
end else
|
end else
|
||||||
G.iter_succ (fun nextnode ->
|
G.iter_succ (fun nextnode ->
|
||||||
let l = get_notelem t nextnode in
|
let l = Hashtbl.find t.notelem nextnode in
|
||||||
if List.mem thisnode l then
|
if not(List.mem thisnode l) then
|
||||||
Hashtbl.replace t.notelem nextnode (thisnode::l)
|
Hashtbl.replace t.notelem nextnode (thisnode::l)
|
||||||
) component thisnode;
|
) component thisnode;
|
||||||
|
|
||||||
ignore(Stack.pop path);
|
ignore(Stack.pop path);
|
||||||
(closed,result)
|
(closed, result)
|
||||||
in
|
in
|
||||||
|
|
||||||
(* Johnson's algorithm requires some ordering of the nodes. *)
|
(* Johnson's algorithm requires some ordering of the nodes. *)
|
||||||
let vertex_set = G.fold_vertex SV.add g SV.empty in
|
let vertex_set = G.fold_vertex SV.add g SV.empty in
|
||||||
Printf.eprintf "inital vertex set %s\n" (print_set vertex_set);
|
let result = SV.fold (fun s result ->
|
||||||
SV.fold (fun s result ->
|
|
||||||
(* Build the subgraph induced by s and following nodes in the ordering *)
|
(* Build the subgraph induced by s and following nodes in the ordering *)
|
||||||
Printf.eprintf "selected element %d\n" (G.V.label s);
|
|
||||||
let subset = SV.add s (partition vertex_set s) in
|
let subset = SV.add s (partition vertex_set s) in
|
||||||
Printf.eprintf "subset %s\n" (print_set subset);
|
|
||||||
let subgraph = extract_subgraph g subset in
|
let subgraph = extract_subgraph g subset in
|
||||||
|
|
||||||
if G.nb_edges subgraph > 0 then begin
|
|
||||||
(* Find the strongly connected component in the subgraph
|
(* Find the strongly connected component in the subgraph
|
||||||
* that contains the least node according to the ordering *)
|
* that contains the least node according to the ordering *)
|
||||||
let scc = G.Components.scc_list subgraph in
|
let scc = G.Components.scc_list subgraph in
|
||||||
let minnode = SV.min_elt subset in
|
let minnode = SV.min_elt subset in
|
||||||
Printf.eprintf "minnode %d\n" (G.V.label minnode);
|
|
||||||
let mincomp = List.find (fun l -> List.mem minnode l) scc in
|
let mincomp = List.find (fun l -> List.mem minnode l) scc in
|
||||||
Printf.eprintf "mincomp %s\n" (print_set ((to_set mincomp)));
|
|
||||||
|
|
||||||
(* smallest node in the component according to the ordering *)
|
(* smallest node in the component according to the ordering *)
|
||||||
let startnode = minnode in
|
|
||||||
let component = extract_subgraph subgraph (to_set mincomp) in
|
let component = extract_subgraph subgraph (to_set mincomp) in
|
||||||
|
|
||||||
G.dot_output component (Printf.sprintf "test-component%d.dot" (G.V.label s));
|
if G.nb_edges component > 0 then begin
|
||||||
|
|
||||||
(* init the block table for this component *)
|
(* init the block table for this component *)
|
||||||
let t = init_block component in
|
let t = init_block component in
|
||||||
|
|
||||||
snd(circuit t result startnode startnode component);
|
snd(circuit t result minnode minnode component);
|
||||||
end else begin
|
end else
|
||||||
Printf.eprintf "No edges to consider\n";
|
|
||||||
result
|
result
|
||||||
end
|
|
||||||
) vertex_set []
|
) vertex_set []
|
||||||
|
in
|
||||||
|
List.rev result
|
||||||
;;
|
;;
|
||||||
|
|
||||||
let g = G.Rand.graph ~v:5 ~e:10 () in
|
if Array.length Sys.argv < 3 then begin
|
||||||
G.dot_output g "test.dot";
|
Printf.printf "usage: %s num_vertices [v1,v2...]\n" Sys.argv.(0);
|
||||||
|
exit 1;
|
||||||
|
end;
|
||||||
|
|
||||||
|
let v = int_of_string (Sys.argv.(1)) in
|
||||||
|
let g = G.create ~size:v () in
|
||||||
|
|
||||||
|
let a = Array.init v G.V.create in
|
||||||
|
|
||||||
|
for i = 2 to Array.length Sys.argv - 1 do
|
||||||
|
let v1, v2 = String.split Sys.argv.(i) "," in
|
||||||
|
G.add_edge g a.(int_of_string v1) a.(int_of_string v2);
|
||||||
|
done;
|
||||||
|
|
||||||
let ll = find_all_cycles_johnson g in
|
let ll = find_all_cycles_johnson g in
|
||||||
List.iter (fun path ->
|
List.iter (fun path ->
|
||||||
let path = stack_to_list path in
|
Printf.printf "%s\n"
|
||||||
Printf.printf "path : %s\n"
|
|
||||||
(String.join " " (List.map (fun e -> string_of_int (G.V.label e)) path))
|
(String.join " " (List.map (fun e -> string_of_int (G.V.label e)) path))
|
||||||
) ll
|
) ll
|
||||||
|
|
|
@ -17,52 +17,48 @@ let find_all_cycles_johnson g =
|
||||||
(* list to accumulate the circuits found *)
|
(* list to accumulate the circuits found *)
|
||||||
let result = ref [] in
|
let result = ref [] in
|
||||||
|
|
||||||
let rec circuit thisnode startnode component =
|
let rec unblock n =
|
||||||
|
if Hashtbl.find blocked n then begin
|
||||||
|
Hashtbl.replace blocked n false;
|
||||||
|
List.iter unblock (Hashtbl.find b n);
|
||||||
|
Hashtbl.replace b n [];
|
||||||
|
end
|
||||||
|
in
|
||||||
|
|
||||||
let stack_to_list s =
|
let stack_to_list s =
|
||||||
let l = ref [] in
|
let l = ref [] in
|
||||||
Stack.iter (fun e -> l:= e::!l) s;
|
Stack.iter (fun e -> l:= e::!l) s;
|
||||||
!l
|
!l
|
||||||
in
|
in
|
||||||
|
|
||||||
let rec unblock thisnode =
|
let rec circuit thisnode startnode component =
|
||||||
Printf.eprintf "unblock %d\n" (G.V.label thisnode);
|
|
||||||
if Hashtbl.find blocked thisnode then begin
|
|
||||||
Hashtbl.replace blocked thisnode false;
|
|
||||||
List.iter unblock (Hashtbl.find b thisnode);
|
|
||||||
Hashtbl.replace b thisnode []
|
|
||||||
end
|
|
||||||
in
|
|
||||||
let closed = ref false in
|
let closed = ref false in
|
||||||
Stack.push thisnode path;
|
Stack.push thisnode path;
|
||||||
Hashtbl.replace blocked thisnode true;
|
Hashtbl.replace blocked thisnode true;
|
||||||
G.iter_succ (fun nextnode ->
|
G.iter_succ (fun nextnode ->
|
||||||
Printf.eprintf "startnode %d\n" (G.V.label startnode);
|
|
||||||
Printf.eprintf "nextnode %d\n" (G.V.label nextnode);
|
|
||||||
if G.V.equal nextnode startnode then begin
|
if G.V.equal nextnode startnode then begin
|
||||||
result := ((stack_to_list path))::!result;
|
result := ((stack_to_list path))::!result;
|
||||||
closed := true;
|
closed := true;
|
||||||
Printf.eprintf "closed = true 1\n";
|
|
||||||
end else begin if not(Hashtbl.find blocked nextnode) then
|
end else begin if not(Hashtbl.find blocked nextnode) then
|
||||||
if circuit nextnode startnode component then begin
|
if circuit nextnode startnode component then begin
|
||||||
closed := true;
|
closed := true;
|
||||||
Printf.eprintf "closed = true 2\n";
|
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
) component thisnode;
|
) component thisnode;
|
||||||
if !closed then begin
|
if !closed then begin
|
||||||
Printf.eprintf "closed = true 3\n";
|
|
||||||
unblock thisnode
|
unblock thisnode
|
||||||
end
|
end
|
||||||
else
|
else
|
||||||
G.iter_succ (fun nextnode ->
|
G.iter_succ (fun nextnode ->
|
||||||
if List.mem thisnode (Hashtbl.find b nextnode) then
|
let l = Hashtbl.find b nextnode in
|
||||||
Hashtbl.replace b nextnode (thisnode::(Hashtbl.find b nextnode))
|
if not(List.mem thisnode l) then
|
||||||
|
Hashtbl.replace b nextnode (thisnode::l)
|
||||||
) component thisnode;
|
) component thisnode;
|
||||||
ignore(Stack.pop path);
|
ignore(Stack.pop path);
|
||||||
!closed
|
!closed
|
||||||
in
|
in
|
||||||
let module SV = Set.Make(G.V) in
|
let module SV = Set.Make(G.V) in
|
||||||
let subgraph_ g s =
|
let extract_subgraph g s =
|
||||||
let sg = G.create () in
|
let sg = G.create () in
|
||||||
G.iter_edges (fun v1 v2 ->
|
G.iter_edges (fun v1 v2 ->
|
||||||
if SV.mem v1 s then G.add_vertex sg v1;
|
if SV.mem v1 s then G.add_vertex sg v1;
|
||||||
|
@ -77,47 +73,47 @@ let find_all_cycles_johnson g =
|
||||||
*)
|
*)
|
||||||
let to_set l = List.fold_right SV.add l SV.empty in
|
let to_set l = List.fold_right SV.add l SV.empty in
|
||||||
let vertex_set = G.fold_vertex SV.add g SV.empty in
|
let vertex_set = G.fold_vertex SV.add g SV.empty in
|
||||||
let part s w = snd(SV.partition (fun e -> e >= w) s) in
|
let part s w = fst(SV.partition (fun e -> e >= w) s) in
|
||||||
let print_set s =
|
|
||||||
String.join " " (List.map (fun e ->
|
|
||||||
string_of_int (G.V.label e)
|
|
||||||
) (SV.elements s))
|
|
||||||
in
|
|
||||||
Printf.eprintf "inital set %s\n" (print_set vertex_set);
|
|
||||||
SV.iter (fun s ->
|
SV.iter (fun s ->
|
||||||
(* Build the subgraph induced by s and following nodes in the ordering *)
|
(* Build the subgraph induced by s and following nodes in the ordering *)
|
||||||
Printf.eprintf "selected element %d\n" (G.V.label s);
|
|
||||||
let subset = SV.add s (part vertex_set s) in
|
let subset = SV.add s (part vertex_set s) in
|
||||||
Printf.eprintf "subset %s\n" (print_set subset);
|
let subgraph = extract_subgraph g subset in
|
||||||
let subgraph = subgraph_ g subset in
|
|
||||||
if G.nb_edges subgraph > 0 then begin
|
|
||||||
let scc = G.Components.scc_list subgraph in
|
let scc = G.Components.scc_list subgraph in
|
||||||
(* Find the strongly connected component in the subgraph
|
(* Find the strongly connected component in the subgraph
|
||||||
* that contains the least node according to the ordering *)
|
* that contains the least node according to the ordering *)
|
||||||
let minnode = SV.min_elt subset in
|
let minnode = SV.min_elt subset in
|
||||||
Printf.eprintf "minnode %d\n" (G.V.label minnode);
|
|
||||||
let mincomp = List.find (fun l -> List.mem minnode l) scc in
|
let mincomp = List.find (fun l -> List.mem minnode l) scc in
|
||||||
Printf.eprintf "mincomp %s\n" (print_set ((to_set mincomp)));
|
|
||||||
(* smallest node in the component according to the ordering *)
|
(* smallest node in the component according to the ordering *)
|
||||||
let startnode = minnode in
|
let component = extract_subgraph subgraph (to_set mincomp) in
|
||||||
let component = subgraph_ subgraph (to_set mincomp) in
|
if G.nb_edges component > 0 then begin
|
||||||
G.dot_output component (Printf.sprintf "test-component%d.dot" (G.V.label s));
|
|
||||||
G.iter_vertex (fun node ->
|
G.iter_vertex (fun node ->
|
||||||
Hashtbl.add blocked node false;
|
Hashtbl.replace blocked node false;
|
||||||
Hashtbl.add b node [];
|
Hashtbl.replace b node [];
|
||||||
) component;
|
) component;
|
||||||
ignore(circuit startnode startnode component);
|
ignore(circuit minnode minnode component);
|
||||||
end else
|
end
|
||||||
Printf.eprintf "No edges to consider\n"
|
|
||||||
) vertex_set;
|
) vertex_set;
|
||||||
|
|
||||||
!result
|
List.rev !result
|
||||||
;;
|
;;
|
||||||
|
|
||||||
let g = G.Rand.graph ~v:5 ~e:10 () in
|
if Array.length Sys.argv < 3 then begin
|
||||||
G.dot_output g "test.dot";
|
Printf.printf "usage: %s num_vertices [v1,v2...]\n" Sys.argv.(0);
|
||||||
|
exit 1;
|
||||||
|
end;
|
||||||
|
|
||||||
|
let v = int_of_string (Sys.argv.(1)) in
|
||||||
|
let g = G.create ~size:v () in
|
||||||
|
|
||||||
|
let a = Array.init v G.V.create in
|
||||||
|
|
||||||
|
for i = 2 to Array.length Sys.argv - 1 do
|
||||||
|
let v1, v2 = String.split Sys.argv.(i) "," in
|
||||||
|
G.add_edge g a.(int_of_string v1) a.(int_of_string v2);
|
||||||
|
done;
|
||||||
|
|
||||||
let ll = find_all_cycles_johnson g in
|
let ll = find_all_cycles_johnson g in
|
||||||
List.iter (fun path ->
|
List.iter (fun path ->
|
||||||
Printf.printf "path : %s\n"
|
Printf.printf "%s\n"
|
||||||
(String.join " " (List.map (fun e -> string_of_int (G.V.label e)) path))
|
(String.join " " (List.map (fun e -> string_of_int (G.V.label e)) path))
|
||||||
) ll
|
) ll
|
||||||
|
|
Loading…
Reference in a new issue