(**************************************************************************) (* Copyright (C) 2012 Pietro Abate *) (* Copyright (C) 2012 Johannes Schauer *) (* *) (* This library is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as *) (* published by the Free Software Foundation, either version 3 of the *) (* License, or (at your option) any later version. *) (**************************************************************************) open Graph open ExtLib open ExtString module G = Pack.Digraph let find_all_cycles_johnson g = if not G.is_directed then assert false; (* stack of nodes in current path *) let path = Stack.create () in (* vertex: blocked from search *) let blocked = Hashtbl.create 1023 in (* graph portions that yield no elementary circuit *) let b = Hashtbl.create 1023 in (* list to accumulate the circuits found *) let result = ref [] in let rec unblock n = if Hashtbl.find blocked n then begin Hashtbl.replace blocked n false; List.iter unblock (Hashtbl.find b n); Hashtbl.replace b n []; end in let stack_to_list s = let l = ref [] in Stack.iter (fun e -> l:= e::!l) s; !l in let rec circuit thisnode startnode component = let closed = ref false in Stack.push thisnode path; Hashtbl.replace blocked thisnode true; G.iter_succ (fun nextnode -> if G.V.equal nextnode startnode then begin result := ((stack_to_list path))::!result; closed := true; end else begin if not(Hashtbl.find blocked nextnode) then if circuit nextnode startnode component then begin closed := true; end end ) component thisnode; if !closed then begin unblock thisnode end else G.iter_succ (fun nextnode -> let l = Hashtbl.find b nextnode in if not(List.mem thisnode l) then Hashtbl.replace b nextnode (thisnode::l) ) component thisnode; ignore(Stack.pop path); !closed in let module SV = Set.Make(G.V) in let extract_subgraph g s = let sg = G.create () in G.iter_edges (fun v1 v2 -> if SV.mem v1 s then G.add_vertex sg v1; if SV.mem v2 s then G.add_vertex sg v2; if SV.mem v1 s && SV.mem v2 s then G.add_edge sg v1 v2 ) g; sg in (* Johnson's algorithm requires some ordering of the nodes. * They might not be sortable so we assign an arbitrary ordering. *) let to_set l = List.fold_right SV.add l SV.empty in let vertex_set = G.fold_vertex SV.add g SV.empty in let part s w = fst(SV.partition (fun e -> e >= w) s) in SV.iter (fun s -> (* Build the subgraph induced by s and following nodes in the ordering *) let subset = SV.add s (part vertex_set s) in let subgraph = extract_subgraph g subset in let scc = G.Components.scc_list subgraph in (* Find the strongly connected component in the subgraph * that contains the least node according to the ordering *) let minnode = SV.min_elt subset in let mincomp = List.find (fun l -> List.mem minnode l) scc in (* smallest node in the component according to the ordering *) let component = extract_subgraph subgraph (to_set mincomp) in if G.nb_edges component > 0 then begin G.iter_vertex (fun node -> Hashtbl.replace blocked node false; Hashtbl.replace b node []; ) component; ignore(circuit minnode minnode component); end ) vertex_set; List.rev !result ;; if Array.length Sys.argv < 3 then begin Printf.printf "usage: %s num_vertices [v1,v2...]\n" Sys.argv.(0); exit 1; end; let v = int_of_string (Sys.argv.(1)) in let g = G.create ~size:v () in let a = Array.init v G.V.create in for i = 2 to Array.length Sys.argv - 1 do let v1, v2 = String.split Sys.argv.(i) "," in G.add_edge g a.(int_of_string v1) a.(int_of_string v2); done; let ll = find_all_cycles_johnson g in List.iter (fun path -> Printf.printf "%s\n" (String.join " " (List.map (fun e -> string_of_int (G.V.label e)) path)) ) ll