open Graph open ExtLib open ExtString module G = Pack.Digraph module SV = Set.Make(G.V) let to_set l = List.fold_right SV.add l SV.empty ;; let partition s w = fst(SV.partition (fun e -> e >= w) s);; let print_set s = String.join " " (List.map (fun e -> string_of_int (G.V.label e) ) (SV.elements s)) ;; let extract_subgraph g s = let sg = G.create () in G.iter_edges (fun v1 v2 -> if SV.mem v1 s then G.add_vertex sg v1; if SV.mem v2 s then G.add_vertex sg v2; if SV.mem v1 s && SV.mem v2 s then G.add_edge sg v1 v2 ) g; sg ;; let stack_to_list s = let l = ref [] in Stack.iter (fun e -> l:= e::!l) s; !l ;; type block = { blocked : (G.V.t,bool) Hashtbl.t; notelem : (G.V.t,G.V.t list) Hashtbl.t } let init_block g = let t = { blocked = Hashtbl.create 1023; notelem = Hashtbl.create 1023; } in G.iter_vertex (fun node -> Hashtbl.add t.blocked node false; Hashtbl.add t.notelem node []; ) g; t ;; let rec unblock t n = if Hashtbl.find t.blocked n then begin Hashtbl.replace t.blocked n false; List.iter (unblock t) (Hashtbl.find t.notelem n); Hashtbl.replace t.notelem n []; end ;; let block t n = Hashtbl.replace t.blocked n true ;; let find_all_cycles_johnson g = if not G.is_directed then assert false; (* stack of nodes in current path *) let path = Stack.create () in let rec circuit t result thisnode startnode component = Stack.push thisnode path; block t thisnode; let (closed,result) = G.fold_succ (fun nextnode (c,r) -> if G.V.equal nextnode startnode then begin (true, (stack_to_list path)::r) end else begin if not(Hashtbl.find t.blocked nextnode) then begin let c2, r2 = circuit t r nextnode startnode component in (c || c2, r2) end else (c,r) end ) component thisnode (false,result) in if closed then begin unblock t thisnode end else G.iter_succ (fun nextnode -> let l = Hashtbl.find t.notelem nextnode in if not(List.mem thisnode l) then Hashtbl.replace t.notelem nextnode (thisnode::l) ) component thisnode; ignore(Stack.pop path); (closed, result) in (* Johnson's algorithm requires some ordering of the nodes. *) let vertex_set = G.fold_vertex SV.add g SV.empty in let result = SV.fold (fun s result -> (* Build the subgraph induced by s and following nodes in the ordering *) let subset = SV.add s (partition vertex_set s) in let subgraph = extract_subgraph g subset in (* Find the strongly connected component in the subgraph * that contains the least node according to the ordering *) let scc = G.Components.scc_list subgraph in let minnode = SV.min_elt subset in let mincomp = List.find (fun l -> List.mem minnode l) scc in (* smallest node in the component according to the ordering *) let component = extract_subgraph subgraph (to_set mincomp) in if G.nb_edges component > 0 then begin (* init the block table for this component *) let t = init_block component in snd(circuit t result minnode minnode component); end else result ) vertex_set [] in List.rev result ;; if Array.length Sys.argv < 3 then begin Printf.printf "usage: %s num_vertices [v1,v2...]\n" Sys.argv.(0); exit 1; end; let v = int_of_string (Sys.argv.(1)) in let g = G.create ~size:v () in let a = Array.init v G.V.create in for i = 2 to Array.length Sys.argv - 1 do let v1, v2 = String.split Sys.argv.(i) "," in G.add_edge g a.(int_of_string v1) a.(int_of_string v2); done; let ll = find_all_cycles_johnson g in List.iter (fun path -> Printf.printf "%s\n" (String.join " " (List.map (fun e -> string_of_int (G.V.label e)) path)) ) ll