128 lines
4.2 KiB
OCaml
128 lines
4.2 KiB
OCaml
(**************************************************************************)
|
|
(* Copyright (C) 2012 Pietro Abate <pietro.abate@pps.jussieu.fr> *)
|
|
(* Copyright (C) 2012 Johannes Schauer <j.schauer@email.de> *)
|
|
(* *)
|
|
(* This library is free software: you can redistribute it and/or modify *)
|
|
(* it under the terms of the GNU Lesser General Public License as *)
|
|
(* published by the Free Software Foundation, either version 3 of the *)
|
|
(* License, or (at your option) any later version. *)
|
|
(**************************************************************************)
|
|
|
|
open Graph
|
|
open ExtLib
|
|
open ExtString
|
|
|
|
module G = Pack.Digraph
|
|
|
|
let find_all_cycles_johnson g =
|
|
if not G.is_directed then
|
|
assert false;
|
|
(* stack of nodes in current path *)
|
|
let path = Stack.create () in
|
|
(* vertex: blocked from search *)
|
|
let blocked = Hashtbl.create 1023 in
|
|
(* graph portions that yield no elementary circuit *)
|
|
let b = Hashtbl.create 1023 in
|
|
(* list to accumulate the circuits found *)
|
|
let result = ref [] in
|
|
|
|
let rec unblock n =
|
|
if Hashtbl.find blocked n then begin
|
|
Hashtbl.replace blocked n false;
|
|
List.iter unblock (Hashtbl.find b n);
|
|
Hashtbl.replace b n [];
|
|
end
|
|
in
|
|
|
|
let stack_to_list s =
|
|
let l = ref [] in
|
|
Stack.iter (fun e -> l:= e::!l) s;
|
|
!l
|
|
in
|
|
|
|
let rec circuit thisnode startnode component =
|
|
let closed = ref false in
|
|
Stack.push thisnode path;
|
|
Hashtbl.replace blocked thisnode true;
|
|
G.iter_succ (fun nextnode ->
|
|
if G.V.equal nextnode startnode then begin
|
|
result := ((stack_to_list path))::!result;
|
|
closed := true;
|
|
end else begin if not(Hashtbl.find blocked nextnode) then
|
|
if circuit nextnode startnode component then begin
|
|
closed := true;
|
|
end
|
|
end
|
|
) component thisnode;
|
|
if !closed then begin
|
|
unblock thisnode
|
|
end
|
|
else
|
|
G.iter_succ (fun nextnode ->
|
|
let l = Hashtbl.find b nextnode in
|
|
if not(List.mem thisnode l) then
|
|
Hashtbl.replace b nextnode (thisnode::l)
|
|
) component thisnode;
|
|
ignore(Stack.pop path);
|
|
!closed
|
|
in
|
|
let module SV = Set.Make(G.V) in
|
|
let extract_subgraph g s =
|
|
let sg = G.create () in
|
|
G.iter_edges (fun v1 v2 ->
|
|
if SV.mem v1 s then G.add_vertex sg v1;
|
|
if SV.mem v2 s then G.add_vertex sg v2;
|
|
if SV.mem v1 s && SV.mem v2 s then
|
|
G.add_edge sg v1 v2
|
|
) g;
|
|
sg
|
|
in
|
|
(* Johnson's algorithm requires some ordering of the nodes.
|
|
* They might not be sortable so we assign an arbitrary ordering.
|
|
*)
|
|
let to_set l = List.fold_right SV.add l SV.empty in
|
|
let vertex_set = G.fold_vertex SV.add g SV.empty in
|
|
let part s w = fst(SV.partition (fun e -> e >= w) s) in
|
|
SV.iter (fun s ->
|
|
(* Build the subgraph induced by s and following nodes in the ordering *)
|
|
let subset = SV.add s (part vertex_set s) in
|
|
let subgraph = extract_subgraph g subset in
|
|
let scc = G.Components.scc_list subgraph in
|
|
(* Find the strongly connected component in the subgraph
|
|
* that contains the least node according to the ordering *)
|
|
let minnode = SV.min_elt subset in
|
|
let mincomp = List.find (fun l -> List.mem minnode l) scc in
|
|
(* smallest node in the component according to the ordering *)
|
|
let component = extract_subgraph subgraph (to_set mincomp) in
|
|
if G.nb_edges component > 0 then begin
|
|
G.iter_vertex (fun node ->
|
|
Hashtbl.replace blocked node false;
|
|
Hashtbl.replace b node [];
|
|
) component;
|
|
ignore(circuit minnode minnode component);
|
|
end
|
|
) vertex_set;
|
|
|
|
List.rev !result
|
|
;;
|
|
|
|
if Array.length Sys.argv < 3 then begin
|
|
Printf.printf "usage: %s num_vertices [v1,v2...]\n" Sys.argv.(0);
|
|
exit 1;
|
|
end;
|
|
|
|
let v = int_of_string (Sys.argv.(1)) in
|
|
let g = G.create ~size:v () in
|
|
|
|
let a = Array.init v G.V.create in
|
|
|
|
for i = 2 to Array.length Sys.argv - 1 do
|
|
let v1, v2 = String.split Sys.argv.(i) "," in
|
|
G.add_edge g a.(int_of_string v1) a.(int_of_string v2);
|
|
done;
|
|
|
|
let ll = find_all_cycles_johnson g in
|
|
List.iter (fun path ->
|
|
Printf.printf "%s\n"
|
|
(String.join " " (List.map (fun e -> string_of_int (G.V.label e)) path))
|
|
) ll
|