flowy/parser.py

932 lines
27 KiB
Python
Raw Normal View History

2010-11-05 17:57:01 +00:00
# -*- coding: utf-8 -*-
import ply.lex as lex
import ply.yacc as yacc
from statement import *
from ply.yacc import YaccError
import netaddr
class Lexer(object):
def __init__(self,**kwargs):
self.lexer = lex.lex(module=self, **kwargs)
reserved = {
'splitter' : 'splitterKeyword',
'groupfilter' : 'groupFilterKeyword',
'filter' : 'filterKeyword',
'grouper' : 'grouperKeyword',
'module' : 'moduleKeyword',
'merger' : 'mergerKeyword',
'export' : 'exportKeyword',
'ungrouper' : 'ungrouperKeyword',
'branches' : 'branchesKeyword',
'branch' : 'branchKeyword',
'aggregate' : 'aggregateKeyword',
'as' : 'asKeyword',
'min' : 'minKeyword',
'max' : 'maxKeyword',
'avg' : 'avgKeyword',
'sum' : 'sumKeyword',
'count' : 'countKeyword',
'union' : 'unionKeyword',
'in' : 'inKeyword',
'notin' : 'notinKeyword',
'OR' : 'ORKeyword',
'NOT' : 'NOTKeyword',
'bitOR': 'bitORKeyword',
'bitAND' : 'bitANDKeyword',
'm' : 'mKeyword',
'mi' : 'miKeyword',
'o' : 'oKeyword',
'oi' : 'oiKeyword',
's' : 'sKeyword',
'si' : 'siKeyword',
'd' : 'dKeyword',
'di' : 'diKeyword',
'f' : 'fKeyword',
'fi' : 'fiKeyword',
'eq' : 'eqKeyword', # prevent clash with = for match rules
'delta': 'deltaKeyword',
'rdelta' : 'rdeltaKeyword',
'ms' : 'msKeyword'
}
def t_LTEQ(self, t):
r'<='
t.value = 'LTEQ'
return t
def t_GTEQ(self, t):
r'>='
t.value = 'GTEQ'
return t
def t_ML(self, t):
r'<<'
t.value = 'ML'
return t
def t_MG(self, t):
r'>>'
t.value = 'MG'
return t
def t_LT(self, t):
r'<'
t.value = 'LT'
return t
def t_EQ(self, t):
r'='
t.value = 'EQ'
return t
def t_GT(self, t):
r'>'
t.value = 'GT'
return t
tokens = ['id', 'LT', 'EQ', 'GT',
'LTEQ', 'GTEQ', 'ML', 'MG',
'MAC', 'IPv4', 'IPv6',
'int', 'float', 'hex',
'string'] + list(reserved.values())
t_ignore = ' \t'
t_ignore_comment = r'\#.*'
literals = "+-*/(){},."
def t_string(self, t):
r'"[^"\\\r\n]*(?:\\.[^"\\\r\n]*)*"'
t.value = Arg("string", t.value[1:-1].replace("\\",''), t.value)
return t
def t_IPv4(self, t):
r'\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}'
#the regex does include invalid IPs but they are
#checked later during conversion
try:
t.value =Arg("addr_IPv4", int(netaddr.IP(t.value)), t.value)
return t
except netaddr.AddrFormatError:
message = 'Bad IPv4 format %s at line %s' %(t.value,
t.lexer.lineno)
raise SyntaxError(message)
def t_MAC(self, t):
r'([a-fA-F0-9]{2}[:\-]){5}[a-fA-F0-9]{2}'
try:
t.value = Arg("addr_MAC", int(netaddr.EUI(t.value)), t.value)
return t
except netaddr.AddrFormatError:
message = 'Bad MAC format %s at line %s' %(t.value,
t.lexer.lineno)
raise SyntaxError(message)
def t_IPv6(self, t):
r'(::[0-9a-f]{1,4}[0-9a-f:]*)|([0-9a-f]:[0-9a-f:]*)'
# the regular expression is very genral, so this rule should be
# after the other address rules.
try:
t.value = Arg("addr_IPv6", int(netaddr.IP(t.value)), t.value)
return t
except netaddr.AddrFormatError:
message = 'Bad IPv6 format %s at line %s' %(t.value,
t.lexer.lineno)
raise SyntaxError(message)
def t_float(self, t):
'[0-9]*\.[0-9]+([eE][+-]?[0-9]+)?'
t.value = Arg("float", float(t.value), t.value)
return t
def t_hex(self, t):
r'0[xX][0-9a-fA-F]+'
t.value = Arg("int", int(t.value, 0), t.value)
return t
def t_int(self, t):
r'\d+'
t.value = Arg("int", int(t.value), t.value)
return t
#All the reserved words are matched in this rule
def t_id(self, t):
r'[a-zA-Z_][a-zA-Z_0-9]*'
# matches also keywords, so be careful
t.type = self.reserved.get(t.value,'id') # Check for reserved words
return t
def t_newline(self, t):
r'\n+'
t.lexer.lineno += len(t.value)
# Error handling rule
def t_error(self,t):
msg = "Illegal character '%s'" % t.value[0]
raise SyntaxError(msg)
# Test it output
def test(self,data):
self.lexer.input(data)
while True:
tok = self.lexer.token()
if not tok: break
print tok
class Parser(object):
# the tokens from the lexer class:
tokens = Lexer.tokens
def __init__(self):
self.filters = []
self.groupers = []
self.splitter = None
self.group_filters = []
self.mergers = []
self.branch_names = set()
self.ungroupers = []
self.branches = []
self.input = None
self.outputs = []
self.names = {}
self.lexer = Lexer().lexer
self.parser = yacc.yacc(module=self)
def p_file(self,p):
'''file : pipeline_stage_1n'''
# for k, v in self.names.iteritems():
# print k, v
def p_pipeline_stage_1n(self,p):
'pipeline_stage_1n : pipeline_stage pipeline_stage_1n'
# add a name mapping:
try:
# branch statements dont have names
# so we skip them with try/except
self.names[p[1].name] = p[1]
except AttributeError:
pass
def p_pipeline_stage_end(self,p):
'pipeline_stage_1n :'
def p_pipeline_stage(self,p):
'''
pipeline_stage : splitter
| filter
| composite_filter
| branch
| ungrouper
| grouper
| group_filter
| merger
'''
p[0] = p[1]
def p_splitter(self,p):
'''
splitter : splitterKeyword id '{' '}'
'''
p[0] = Splitter(p[2], p.lineno(2))
if self.splitter != None:
raise SyntaxError(
"More than one splitter defined in file at line %s",p.lineno(2))
self.splitter = p[0]
def p_filter(self,p):
'''
filter : filterKeyword id '{' filter_rule_1n '}'
'''
# Note that p[4] is a list of lists of rules.
# If the list has one element the rule is simple.
# If the rule has more than one element, the
# rule is OR-ed of all the rules in the list
p[0] = Filter(p[2], p.lineno(2), p[4])
self.filters.append(p[0])
def p_composite_filter(self, p):
'''
composite_filter : filterKeyword id '{' filter_ref_rule_1n '}'
'''
# Note that p[4] is a list of lists of rules.
# If the list has one element the rule is simple.
# If the rule has more than one element, the
# rule is OR-ed of all the rules in the list
p[0] = Filter(p[2], p.lineno(2), p[4])
self.filters.append(p[0])
def p_group_filter(self, p):
'''
group_filter : groupFilterKeyword id '{' filter_rule_1n '}'
'''
# Note that p[4] is a list of lists of rules.
# If the list has one element the rule is simple.
# If the rule has more than one element, the
# rule is OR-ed of all the rules in the list
p[0] = Filter(p[2], p.lineno(2), p[4])
self.group_filters.append(p[0])
def p_filter_rule_1n(self,p):
'filter_rule_1n : filter_rule filter_rule_1n'
p[2].extend([p[1]])
p[0] = p[2]
def p_filter_rule_0(self,p):
'filter_rule_1n :'
p[0] = []
def p_filter_rule(self,p):
'''
filter_rule : or_rule
'''
p[0] = p[1]
def p_filter_ref_rule_1n(self,p):
'filter_ref_rule_1n : filter_ref_rule filter_ref_rule_1n'
p[2].extend([p[1]])
p[0] = p[2]
def p_filter_ref_rule_0(self,p):
'filter_ref_rule_1n : filter_ref_rule'
p[0] = [p[1]]
def p_filter_ref_rule(self,p):
'''
filter_ref_rule : or_id
'''
p[0] = p[1]
def p_or_id(self, p):
'or_id : not_id opt_or_id'
p[1].extend(p[2])
p[0] = p[1]
def p_opt_or_id(self, p):
'''
opt_or_id : ORKeyword not_id opt_or_id
'''
p[2].extend(p[3])
p[0] = p[2]
def p_opt_or_id_end(self, p):
'opt_or_id :'
p[0] = []
def p_not_id(self, p):
'''
not_id : NOTKeyword id
| id
'''
try:
p[0] = [FilterRef(p[2], p.lineno(2), True)]
except IndexError:
p[0] = [FilterRef(p[1], p.lineno(1))]
def p_or_optrule(self,p):
'or_rule : rule_or_not opt_rule'
if len(p[2]) > 0:
ors = [p[1]]
ors.extend(p[2])
p[0] = ors
else:
p[0] = [p[1]]
def p_or_rule(self, p):
'opt_rule : ORKeyword rule_or_not opt_rule'
res = [p[2]]
res.extend(p[3])
p[0] = res
def p_term_opt_rule(self,p):
'opt_rule :'
p[0] = []
def p_rule_or_not(self, p):
'''
rule_or_not : rule
| NOTKeyword rule
'''
try:
p[2].NOT = True
p[0] = p[2]
except IndexError:
p[0] = p[1]
def p_rule(self,p):
'''
rule : infix_rule
| prefix_rule
'''
p[0] = p[1]
def p_infix_rule(self,p):
'infix_rule : arg op arg'
p[1].extend(p[3]) # concatenate args to get [arg, arg]
# for some unknown reason p.lineno(2) does not work in this production
# so p[2] is (op, lineno)
p[0] = Rule(p[2][0], p[2][1], p[1]) # (op, line, args) From filter.py
def p_op(self, p):
'''
op : EQ
| LT
| GT
| LTEQ
| GTEQ
| ML
| MG
| inKeyword
| notinKeyword
'''
p[0] = (p[1], p.lineno(1))
def p_rule_prefix(self,p):
'''
prefix_rule : id '(' args ')'
| bitANDKeyword '(' args ')'
| bitORKeyword '(' args ')'
'''
p[0] = Rule(p[1], p.lineno(1), p[3])
def p_args(self,p):
'''
args : arg ',' args
'''
p[0] = p[1]
p[0].extend(p[3]) # concatenate the rest of the args to arg
def p_args_more(self,p):
'args : arg'
p[0] = p[1]
def p_no_args(self, p):
'args :'
p[0] = []
def p_arg(self, p):
'''
arg : id
| IPv4
| IPv6
| CIDR
| MAC
| int
| float
| hex
| prefix_rule
| string
'''
if type(p[1]) is type("string"):
p[1] = Field(p[1]) # Was defined in filter.py, but the definition was commented out.
p[0] = [p[1]] # list of one element for easy [].extend later
def p_cidr(self, p):
'''
CIDR : IPv4 '/' int
| IPv6 '/' int
'''
p[0] = Rule('cidr_mask', p[1], p[3])
def p_start_branch(self, p):
'''
branch : id arrow mid_branch
'''
br = [BranchNode(p[1], p.lineno(1))] # In statement.py
br.extend(p[3])
p[0] = br
self.branches.append(p[0])
def p_input_branch(self, p):
'''
branch : string arrow mid_branch
'''
if self.input != None:
raise SyntaxError("More than one input defined in file at line %s",
p.lineno(1))
self.input = Input(p[1].value, p.lineno(1))
br = [self.input]
br.extend(p[3])
p[0] = br
self.branches.append(p[0])
def p_split_branch(self, p):
'''
branch : id branchKeyword mid_branch
'''
br = [BranchNode(p[1], p.lineno(1))]
p[3][0] = Branch(p[3][0].name, p[3][0].line)
br.extend(p[3])
p[0] = br
self.branches.append(p[0])
def p_mid_branch(self, p):
'''
mid_branch : id arrow mid_branch
'''
br = [BranchNode(p[1], p.lineno(1))]
br.extend(p[3])
p[0] = br
def p_mid_branch_terminate(self, p):
'''
mid_branch : end_branch
'''
p[0] = p[1]
def p_end_branch(self, p):
'end_branch : id'
p[0] = [BranchNode(p[1], p.lineno(1))]
def p_output_branch(self, p):
'end_branch : string'
out = Output(p[1].value, p.lineno(1))
self.outputs.append(out)
p[0] = [out]
def p_arrow(self, p):
"""arrow : "-" GT"""
pass
def p_ungrouper(self, p):
'''
ungrouper : ungrouperKeyword id '{' '}'
'''
p[0] = Ungrouper(p[2], p.lineno(2))
self.ungroupers.append(p[0])
def p_grouper(self, p):
"grouper : grouperKeyword id '{' module1_n aggregate '}'"
p[0] = Grouper(p[2], p.lineno(2), p[4], p[5])
# insert aggregation of record ids (needed for ungrouping later)
p[0].aggr.insert(0,(Rule('union', p.lineno(2), [Field('rec_id'),
'records'])))
2014-06-26 06:47:04 +00:00
p[0].aggr.insert(0,(Rule('min', p.lineno(2), [Field('First'),
'First'])))
p[0].aggr.insert(0,(Rule('max', p.lineno(2), [Field('Last'),
'Last'])))
2010-11-05 17:57:01 +00:00
self.groupers.append(p[0])
def p_module1_n(self, p):
'module1_n : module module1_n'
p[1].extend(p[2])
p[0] = p[1]
def p_module0(self, p):
'module1_n :'
p[0] = []
def p_module(self, p):
"module : moduleKeyword id '{' grouper_rule1_n '}'"
p[0] = [Module(p[2], p.lineno(2), p[4])]
def p_grouper_rule1_n(self, p):
'grouper_rule1_n : grouper_rule grouper_rule1_n'
p[1].extend(p[2])
p[0] = p[1]
def p_grouper_rule0(self, p):
'grouper_rule1_n :'
p[0] = []
def p_grouper_rule(self, p):
'grouper_rule : id grouper_op id'
p[0] = [[GrouperRule(p[2], p.lineno(2), [Field(p[1]), Field(p[3]),
None, False])]]
def p_grouper_rule_delta(self, p):
'''
grouper_rule : id grouper_op id deltaKeyword delta_arg
'''
p[0] = [[GrouperRule(p[2], p.lineno(2), [Field(p[1]), Field(p[3]),
p[5], False])]]
def p_grouper_rule_rel_delta(self, p):
'''
grouper_rule : id grouper_op id rdeltaKeyword delta_arg
'''
p[0] = [[GrouperRule(p[2], p.lineno(2), [Field(p[1]), Field(p[3]),
p[5], True])]]
def p_grouper_op(self, p):
'''
grouper_op : EQ
| LT
| GT
| GTEQ
| LTEQ
'''
p[0] = p[1]
def p_delta_arg(self, p):
'''
delta_arg : time
| int
'''
p[0] = p[1]
def p_time(self, p):
'''
time : int sKeyword
| int msKeyword
| int minKeyword
'''
# the number should be in ms:
if p[2] == 's':
p[1].value = p[1].value * 1000
if p[2] == 'min':
p[1].value = p[1].value * 60 * 1000
p[0] = p[1]
def p_aggregate(self, p):
'aggregate : aggregateKeyword aggr1_n'
for aggr in p[2]:
if aggr.line == 0:
aggr.line = p.lineno(1)
p[0] = p[2]
def p_aggr1_n(self, p):
'aggr1_n : aggr opt_aggr'
p[1].extend(p[2])
p[0] = p[1]
def p_opt_aggr(self, p):
"opt_aggr : ',' aggr opt_aggr"
p[2].extend(p[3])
p[0] = p[2]
def p_opt_aggr_end(self, p):
'opt_aggr :'
p[0] = []
def p_aggr(self, p):
"aggr : aggr_op '(' id_or_qid ')' asKeyword id"
args = [Field(p[3]), p[6]] # [id_or_qid, id, aggr_op]
p[0] = [Rule(p[1], p.lineno(4), args)]
def p_simple_agg(self, p):
'aggr : id_or_qid asKeyword id'
args = [Field(p[1]), p[3]] # [qid, id]
p[0] = [Rule('last', p.lineno(2), args)]
def p_simple_agg_same_name(self, p):
'aggr : id_or_qid'
args = [Field(p[1]), p[1]] # [qid, id]
p[0] = [Rule('last', p.lineno(1), args)]
def p_qid(self, p):
'''
qid : id '.' id
'''
p[0] = p[1] + p[2] + p[3]
def p_id_or_qid(self, p):
'''
id_or_qid : id
| qid
'''
p[0] = p[1]
def p_aggr_op(self, p):
'''
aggr_op : minKeyword
| maxKeyword
| sumKeyword
| avgKeyword
| unionKeyword
| countKeyword
| bitANDKeyword
| bitORKeyword
'''
p[0] = p[1]
def p_merger(self, p):
"merger : mergerKeyword id '{' merger_module1_n export '}'"
p[0] = Merger(p[2], p.lineno(2), p[4], p[5])
self.mergers.append(p[0])
def p_merger_module1_n(self, p):
'merger_module1_n : merger_module merger_module1_n'
p[1].extend(p[2])
p[0] = p[1]
def p_merger_module0(self, p):
'merger_module1_n : '
p[0] = []
def p_merger_module(self, p):
"""
merger_module : moduleKeyword id '{' merger_branches merger_rule1_n '}'
"""
p[0] = [Module(p[2], p.lineno(2), p[5], p[4])]
def p_merger_branches(self, p):
'merger_branches : branchesKeyword branches1_n'
p[0] = p[2]
def p_branches1_n(self, p):
"""
branches1_n : id ',' branches1_n
"""
p[0] = [p[1]]
p[0].extend(p[3])
def p_branches1(self, p):
' branches1_n : id'
p[0] = [p[1]]
def p_export(self, p):
'export : exportKeyword id'
p[0] = p[2]
def p_merger_rule1_n(self, p):
'merger_rule1_n : merger_rule merger_rule1_n'
p[1].extend(p[2])
p[0] = p[1]
def p_merger_rule0(self,p):
'merger_rule1_n :'
p[0] = []
def p_merger_rule(self, p):
'''
merger_rule : merger_prefix_rule
| merger_infix_rule
'''
p[0] = [[p[1]]]
def p_not_merger_rule(self, p):
'''
merger_rule : NOTKeyword merger_prefix_rule
| NOTKeyword merger_infix_rule
'''
p[2].NOT = True
p[0] = [[p[2]]]
def p_merger_infix_rule(self, p):
'merger_infix_rule : qid_arg op qid_arg'
p[1].extend(p[3])
p[0] = Rule(p[2][0], p[2][1], p[1])
def p_merger_prefix_rule(self,p):
'''
merger_prefix_rule : id '(' qid_args ')'
'''
p[0] = Rule(p[1], p.lineno(1), p[3])
def p_qid_args(self,p):
'''
qid_args : qid_arg ',' qid_args
'''
p[0] = p[1]
p[0].extend(p[3]) # concatenate the rest of the args to arg
def p__qid_args_more(self,p):
'qid_args : qid_arg'
p[0] = p[1]
def p_no_qid_args(self, p):
'qid_args :'
p[0] = []
def p_qid_arg(self, p):
'''
qid_arg : qid
| IPv4
| IPv6
| CIDR
| MAC
| int
| float
| hex
| merger_prefix_rule
| string
'''
if type(p[1]) is type("string"):
p[1] = Field(p[1])
p[0] = [p[1]] # list of one element for easy [].extend later
def p_merger_rule_al_op(self, p):
'merger_rule : allen_rule opt_or_allen_rule'
p[1].extend(p[2])
p[0] = [p[1]]
def p_opt_or_allen_rule(self, p):
'opt_or_allen_rule : ORKeyword allen_rule opt_or_allen_rule'
p[2].extend(p[3])
p[0] = p[2]
def p_opt_op_rule_end(self, p):
'opt_or_allen_rule : '
p[0] = []
def p_allen_rule(self, p):
'allen_rule : id allen_op id opt_allen_delta'
args = [Field(p[1]), Field(p[3])]
args.extend(p[4]) # add the delta time to [arg, arg]
p[0] = [AllenRule(p[2], p.lineno(1), args)] # (op, line, args)
def p_opt_allen_delta(self, p):
'''
opt_allen_delta : deltaKeyword time
'''
p[0] = [p[2]]
def p_no_allen_delta(self, p):
'opt_allen_delta :'
p[0] = []
def p_allen_op(self, p):
'''
allen_op : LT
| GT
| EQ
| mKeyword
| miKeyword
| oKeyword
| oiKeyword
| sKeyword
| siKeyword
| dKeyword
| diKeyword
| fKeyword
| fiKeyword
| eqKeyword
'''
# for some strange reason upper level refuses to recognize lineno:
p[0] = p[1]
def p_error(self, p):
msg ="Syntax error. Unexpected token "
msg +="%s (%s)"%(p.value, p.type)
msg += " at line %s"% self.lexer.lineno
raise SyntaxError(msg)
def parse(self, text):
self.parser.parse(text, lexer=self.lexer) # parse method is called from ply.yacc
self.resolve_branches()
def find_io_nodes(self):
'''
Finds which branch nodes are inputs and which are outputs.
The rest of the branches are processing stages.
'''
pass
def check_branching(self):
pass
def check_branch_nodes(self):
for b in self.branch_nodes.values():
if not b.is_branch:
try:
node = self.names[b.name]
if len(b.inputs) == 0:
msg = "Node %s at line" % b.name
msg += " %s does not have input." % b.line
raise SyntaxError(msg)
if len(b.outputs) == 0:
msg = "Node %s at line" % b.name
msg += " %s does not have output." % b.line
raise SyntaxError(msg)
if len(b.inputs) > 1 and type(node) is not Merger:
msg = "Non-Merger node %s at line" % b.name
msg += " %s has more than one input." % b.line
raise SyntaxError(msg)
if len(b.outputs) > 1 and type(node) is not Splitter:
msg = "Non-Splitter node %s at line" % b.name
msg += " %s has more than one output." % b.line
raise SyntaxError(msg)
except KeyError:
# check whether this is some middle node
if len(b.inputs) != 0 and len(b.outputs) !=0:
msg = "Node %s refferenced at line" % b.name
msg += " %s not defined" % b.line
raise SyntaxError(msg)
#check whether the node name is actually parser string(Arg)
if type(b.name) is not Arg:
msg = "Node %s refferenced at line" % b.name
msg += " %s not defined" % b.line
raise SyntaxError(msg)
else:
if len(b.inputs) != 1 or len(b.outputs) != 1:
msg = "Branch Node %s at line" % b.name
msg += " %s must have 1 input and 1 output." % b.line
raise SyntaxError(msg)
def resolve_branches(self):
noname_branchings = []
for branch in self.branches:
# print branch
# print ""
br_name = False
br_index = 0
for i, node in enumerate(branch):
if type(node) is BranchNode:
try:
branch[i] = self.names[node.name]
except KeyError:
msg = "Node %s refferenced at line" % node.name
msg += " %s not defined" % node.line
raise SyntaxError(msg)
if type(node) is Branch:
br_name = node.name
br_index = i
self.branch_names.add(br_name)
if type(node) is Input and i != 0:
msg = "Input node %s at line" % node.name
msg += " %s should be at first posigion" % node.line
msg += " of branching statement"
raise SyntaxError(msg)
if type(node) is Output and i != (len(branch) - 1):
msg = "Output node %s at line" % node.name
msg += " %s should be at position posigion" % node.line
msg += " of branching statement"
raise SyntaxError(msg)
if br_name:
del(branch[br_index])
for node in branch:
node.branches.add(br_name)
else:
noname_branchings.append(branch)
# second iteration to fix the remaining node, which don't have branches
for branch in noname_branchings:
s = set()
for node in branch:
s.update(node.branches)
for node in branch:
node.branches.update(s)
class ParsedFile(object):
def __init__(self, filters, groupers, splitters, group_filters,
mergers, branches, ungroupers, input, output, names):
self.filters = filters
self.groupers = groupers
self.splitters = splitters
self.group_filters = group_filters
self.mergers = mergers
self.branches = branches
self.ungroupers = ungroupers
self.input = input
self.output = output
self.names = names