initial commit
This commit is contained in:
commit
25e18626d8
1 changed files with 233 additions and 0 deletions
233
fitbspline.py
Normal file
233
fitbspline.py
Normal file
|
@ -0,0 +1,233 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
import sys
|
||||
from math import sqrt
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy import interpolate
|
||||
from itertools import tee, izip
|
||||
from matplotlib.patches import Polygon
|
||||
from matplotlib.collections import PatchCollection
|
||||
import matplotlib
|
||||
|
||||
def pairwise(iterable):
|
||||
"s -> (s0,s1), (s1,s2), (s2,s3), ..."
|
||||
a, b = tee(iterable, 2)
|
||||
next(b, None)
|
||||
return izip(a, b)
|
||||
|
||||
def triplewise(iterable):
|
||||
"s -> (s0,s1,s2), (s1,s2,s3), (s2,s3,s4), ..."
|
||||
a,b,c = tee(iterable, 3)
|
||||
next(b, None)
|
||||
next(c, None)
|
||||
next(c, None)
|
||||
return izip(a,b,c)
|
||||
|
||||
# using barycentric coordinates
|
||||
def ptInTriangle(p, p0, p1, p2):
|
||||
A = 0.5 * (-p1[1] * p2[0] + p0[1] * (-p1[0] + p2[0]) + p0[0] * (p1[1] - p2[1]) + p1[0] * p2[1]);
|
||||
sign = -1 if A < 0 else 1;
|
||||
s = (p0[1] * p2[0] - p0[0] * p2[1] + (p2[1] - p0[1]) * p[0] + (p0[0] - p2[0]) * p[1]) * sign;
|
||||
t = (p0[0] * p1[1] - p0[1] * p1[0] + (p0[1] - p1[1]) * p[0] + (p1[0] - p0[0]) * p[1]) * sign;
|
||||
return s >= 0 and t >= 0 and (s + t) <= 2 * A * sign;
|
||||
|
||||
def getxing(p0, p1, p2, p3):
|
||||
ux = p1[0]-p0[0]
|
||||
uy = p1[1]-p0[1]
|
||||
vx = p2[0]-p3[0]
|
||||
vy = p2[1]-p3[1]
|
||||
# get multiplicity of u at which u meets v
|
||||
a = vy*ux-vx*uy
|
||||
if a == 0:
|
||||
# lines are parallel and never meet
|
||||
return None
|
||||
s = (vy*(p3[0]-p0[0])+vx*(p0[1]-p3[1]))/a
|
||||
if s < 1.0:
|
||||
return (p0[0]+s*ux, p0[1]+s*uy)
|
||||
else:
|
||||
return None
|
||||
|
||||
# the line p0-p1 is the upper normal to the path
|
||||
# the line p2-p3 is the lower normal to the path
|
||||
#
|
||||
# | | |
|
||||
# p0--------|--------p1
|
||||
# | | |
|
||||
# | | |
|
||||
# p3--------|--------p2
|
||||
# | | |
|
||||
def ptInQuadrilateral(p, p0, p1, p2, p3):
|
||||
# it might be that the two normals cross at some point
|
||||
# in that case the two triangles are created differently
|
||||
cross = getxing(p0, p1, p2, p3)
|
||||
#if cross:
|
||||
# return ptInTriangle(p, p0, cross, p3) or ptInTriangle(p, p2, cross, p1)
|
||||
#else:
|
||||
# return ptInTriangle(p, p0, p1, p2) or ptInTriangle(p, p2, p3, p0)
|
||||
return ptInTriangle(p, p0, p1, p2) or ptInTriangle(p, p2, p3, p0)
|
||||
|
||||
def find_coeffs(pa, pb):
|
||||
matrix = []
|
||||
for p1, p2 in zip(pa, pb):
|
||||
matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0]*p1[0], -p2[0]*p1[1]])
|
||||
matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1]*p1[0], -p2[1]*p1[1]])
|
||||
|
||||
A = np.matrix(matrix, dtype=np.float)
|
||||
B = np.array(pb).reshape(8)
|
||||
|
||||
#res = np.dot(np.linalg.inv(A), B)
|
||||
res = np.dot(np.linalg.inv(A.T * A) * A.T, B)
|
||||
return np.array(res).reshape(8)
|
||||
|
||||
def main():
|
||||
width = 2/5.0
|
||||
halfwidth = width/2.0
|
||||
x = []
|
||||
y = []
|
||||
with open(sys.argv[1]) as f:
|
||||
for l in f:
|
||||
a,b = l.split()
|
||||
x.append(float(a))
|
||||
y.append(float(b))
|
||||
tck,u = interpolate.splprep([x,y],s=10)
|
||||
unew = np.arange(0,1.1,0.1)
|
||||
out = interpolate.splev(unew,tck)
|
||||
heights = []
|
||||
offs = []
|
||||
height = 0.0
|
||||
for (ax,ay),(bx,by) in pairwise(zip(*out)):
|
||||
s = ax-bx
|
||||
t = ay-by
|
||||
l = sqrt(s*s+t*t)
|
||||
offs.append(height)
|
||||
height += l
|
||||
heights.append(l)
|
||||
# the border of the first segment is just perpendicular to the path
|
||||
cx = -out[1][1]+out[1][0]
|
||||
cy = out[0][1]-out[0][0]
|
||||
cl = sqrt(cx*cx+cy*cy)/halfwidth
|
||||
dx = out[1][1]-out[1][0]
|
||||
dy = -out[0][1]+out[0][0]
|
||||
dl = sqrt(dx*dx+dy*dy)/halfwidth
|
||||
px = [out[0][0]+cx/cl]
|
||||
py = [out[1][0]+cy/cl]
|
||||
qx = [out[0][0]+dx/dl]
|
||||
qy = [out[1][0]+dy/dl]
|
||||
for (ubx,uby),(ux,uy),(uax,uay) in triplewise(zip(*out)):
|
||||
# get adjacent line segment vectors
|
||||
ax = ux-ubx
|
||||
ay = uy-uby
|
||||
bx = uax-ux
|
||||
by = uay-uy
|
||||
# normalize length
|
||||
al = sqrt(ax*ax+ay*ay)
|
||||
bl = sqrt(bx*bx+by*by)
|
||||
ax = ax/al
|
||||
ay = ay/al
|
||||
bx = bx/bl
|
||||
by = by/bl
|
||||
# get vector perpendicular to sum
|
||||
cx = -ay-by
|
||||
cy = ax+bx
|
||||
cl = sqrt(cx*cx+cy*cy)/halfwidth
|
||||
px.append(ux+cx/cl)
|
||||
py.append(uy+cy/cl)
|
||||
# and in the other direction
|
||||
dx = ay+by
|
||||
dy = -ax-bx
|
||||
dl = sqrt(dx*dx+dy*dy)/halfwidth
|
||||
qx.append(ux+dx/dl)
|
||||
qy.append(uy+dy/dl)
|
||||
# the border of the last segment is just perpendicular to the path
|
||||
cx = -out[1][-1]+out[1][-2]
|
||||
cy = out[0][-1]-out[0][-2]
|
||||
cl = sqrt(cx*cx+cy*cy)/halfwidth
|
||||
dx = out[1][-1]-out[1][-2]
|
||||
dy = -out[0][-1]+out[0][-2]
|
||||
dl = sqrt(dx*dx+dy*dy)/halfwidth
|
||||
px.append(out[0][-1]+cx/cl)
|
||||
py.append(out[1][-1]+cy/cl)
|
||||
qx.append(out[0][-1]+dx/dl)
|
||||
qy.append(out[1][-1]+dy/dl)
|
||||
quads = []
|
||||
patches = []
|
||||
#for (p0x,p0y,p1x,p1y),(p3x,p3y,p2x,p2y) in pairwise(zip(px,py,qx,qy)):
|
||||
for (p3x,p3y,p2x,p2y),(p0x,p0y,p1x,p1y) in pairwise(zip(px,py,qx,qy)):
|
||||
quads.append(((p0x,p0y),(p1x,p1y),(p2x,p2y),(p3x,p3y)))
|
||||
polygon = Polygon(((p0x,p0y),(p1x,p1y),(p2x,p2y),(p3x,p3y)), True)
|
||||
patches.append(polygon)
|
||||
containingquad = []
|
||||
for pt in zip(x,y):
|
||||
# for each point, find the quadrilateral that contains it
|
||||
found = []
|
||||
for i,(p0,p1,p2,p3) in enumerate(quads):
|
||||
if ptInQuadrilateral(pt,p0,p1,p2,p3):
|
||||
found.append(i)
|
||||
if found:
|
||||
if len(found) > 2:
|
||||
print found
|
||||
containingquad.append(found)
|
||||
else:
|
||||
print "can't find quad for point"
|
||||
containingquad.append(None)
|
||||
#exit(1)
|
||||
print containingquad
|
||||
trans = []
|
||||
print width, height
|
||||
for off,h,srcquad in zip(offs,heights,quads):
|
||||
#targetquad = ((0,height-off),(width,height-off),(width,height-off-h),(0,height-off-h))
|
||||
targetquad = ((0,off+h),(width,off+h),(width,off),(0,off))
|
||||
trans.append(find_coeffs(srcquad,targetquad))
|
||||
patches.append(Polygon(targetquad,True))
|
||||
tx = []
|
||||
ty = []
|
||||
#targetquad = (0,height),(width,height),(width,0),(0,0)
|
||||
#srcquad = (min(x),max(y)),(max(x),max(y)),(max(x),min(y)),(min(x),min(y))
|
||||
#trans = find_coeffs(srcquad,targetquad)
|
||||
#for (rx,ry) in zip(x,y):
|
||||
# a,b,c,d,e,f,g,h = trans
|
||||
# u = (a*rx + b*ry + c)/(g*rx + h*ry + 1)
|
||||
# v = (d*rx + e*ry + f)/(g*rx + h*ry + 1)
|
||||
# tx.append(u)
|
||||
# ty.append(v)
|
||||
assert len(containingquad) == len(x) == len(y)
|
||||
assert len(out[0]) == len(out[1]) == len(px) == len(py) == len(qx) == len(qy) == len(quads)+1 == len(heights)+1 == len(offs)+1 == len(trans)+1
|
||||
for (rx,ry),l in zip(zip(x,y),containingquad):
|
||||
if not l:
|
||||
continue
|
||||
for i in l[:1]:
|
||||
a,b,c,d,e,f,g,h = trans[i]
|
||||
#den = -a*e+a*h*ry+b*d-b*g*ry-d*h*rx+e*g*rx
|
||||
#tx.append((-b*f+b*ry+c*e-c*h*ry-e*rx+f*h*rx)/den)
|
||||
#ty.append((a*f-a*ry-c*d+c*g*ry+d*rx-f*g*rx)/den)
|
||||
u = (a*rx + b*ry + c)/(g*rx + h*ry + 1)
|
||||
v = (d*rx + e*ry + f)/(g*rx + h*ry + 1)
|
||||
tx.append(u)
|
||||
ty.append(v)
|
||||
sx = []
|
||||
sy = []
|
||||
for (((ax,ay),(bx,by)),(a,b,c,d,e,f,g,h)) in zip(pairwise(zip(*out)),trans):
|
||||
u = (a*ax + b*ay + c)/(g*ax + h*ay + 1)
|
||||
v = (d*ax + e*ay + f)/(g*ax + h*ay + 1)
|
||||
sx.append(u)
|
||||
sy.append(v)
|
||||
u = (a*bx + b*by + c)/(g*bx + h*by + 1)
|
||||
v = (d*bx + e*by + f)/(g*bx + h*by + 1)
|
||||
sx.append(u)
|
||||
sy.append(v)
|
||||
colors = 100*np.random.rand(len(patches)/2)+100*np.random.rand(len(patches)/2)
|
||||
p = PatchCollection(patches, cmap=matplotlib.cm.jet, alpha=0.4)
|
||||
p.set_array(np.array(colors))
|
||||
plt.figure()
|
||||
plt.axes().set_aspect('equal')
|
||||
#plt.axhspan(0, height, xmin=0, xmax=width)
|
||||
fig, ax = plt.subplots()
|
||||
ax.add_collection(p)
|
||||
ax.set_aspect('equal')
|
||||
plt.plot(x,y,out[0],out[1],px,py,qx,qy,tx,ty,sx,sy)
|
||||
#plt.plot(tx,ty)
|
||||
plt.show()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in a new issue