using mapnik
This commit is contained in:
parent
d3692ff587
commit
845a99eec4
1 changed files with 308 additions and 164 deletions
472
mapbender.py
472
mapbender.py
|
@ -26,6 +26,8 @@ import urllib.request
|
|||
import matplotlib.path
|
||||
import matplotlib.transforms
|
||||
import xml.etree.ElementTree as ET
|
||||
import mapnik
|
||||
import cairo
|
||||
|
||||
TILESIZE = 256
|
||||
EARTHRADIUS = 6378137
|
||||
|
@ -45,17 +47,12 @@ def haversine(lon1, lat1, lon2, lat2):
|
|||
return EARTHRADIUS * 2 * math.asin(math.sqrt(a))
|
||||
|
||||
|
||||
def lat2y(a, zoom):
|
||||
return (
|
||||
(1.0 - math.asinh(math.tan(math.radians(a))) / math.pi)
|
||||
/ 2.0
|
||||
* 2 ** zoom
|
||||
* TILESIZE
|
||||
)
|
||||
def lat2y(lat, zoom):
|
||||
return math.log(math.tan(math.pi / 4 + math.radians(lat) / 2)) * EARTHRADIUS
|
||||
|
||||
|
||||
def lon2x(a, zoom):
|
||||
return (a + 180.0) / 360.0 * (2 ** zoom * TILESIZE)
|
||||
def lon2x(lon, zoom):
|
||||
return math.radians(lon) * EARTHRADIUS
|
||||
|
||||
|
||||
def pairwise(iterable):
|
||||
|
@ -106,10 +103,88 @@ def intersects(p0, p1, p2, p3):
|
|||
return True
|
||||
|
||||
|
||||
def main(path, width, subdiv, zoom):
|
||||
def main():
|
||||
import sys
|
||||
|
||||
if len(sys.argv) != 4:
|
||||
print("usage: %s data.gpx mapwidth paperwidth" % sys.argv[0])
|
||||
exit(1)
|
||||
|
||||
zoom = 10
|
||||
latmin = math.inf
|
||||
latmax = -1
|
||||
|
||||
path = []
|
||||
with open(sys.argv[1]) as f:
|
||||
root = ET.parse(f)
|
||||
for trkpt in root.findall(
|
||||
"./gpx:trk/gpx:trkseg/gpx:trkpt",
|
||||
{"gpx": "http://www.topografix.com/GPX/1/1"},
|
||||
):
|
||||
lat = float(trkpt.attrib["lat"])
|
||||
lon = float(trkpt.attrib["lon"])
|
||||
if lat < latmin:
|
||||
latmin = lat
|
||||
if lat > latmax:
|
||||
latmax = lat
|
||||
# apply mercator projection
|
||||
path.append((lon, lat))
|
||||
|
||||
merc = mapnik.Projection('+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs +over')
|
||||
longlat = mapnik.Projection('+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs')
|
||||
#m = mapnik.Map(800, 600)
|
||||
#mapnik.load_map_from_string(m, open("/tmp/openstreetmap-carto/mapnik.xml").read(), False, "/tmp/openstreetmap-carto/")
|
||||
#gpxstyle = mapnik.Style()
|
||||
#gpxrule = mapnik.Rule()
|
||||
#gpxsym = mapnik.LineSymbolizer()
|
||||
#gpxsym.stroke = mapnik.Color('red')
|
||||
#gpxsym.stroke_width = 5
|
||||
#gpxsym.stroke_opacity = 0.5
|
||||
#gpxrule.symbols.append(gpxsym)
|
||||
#gpxstyle.rules.append(gpxrule)
|
||||
#m.append_style('GPXStyle', gpxstyle)
|
||||
#gpxlayer = mapnik.Layer('GPXLayer')
|
||||
##gpxlayer.srs =
|
||||
#gpxlayer.datasource = mapnik.Ogr(file = sys.argv[1], layer = 'tracks')
|
||||
#gpxlayer.styles.append('GPXStyle')
|
||||
#m.layers.append(gpxlayer)
|
||||
#m.aspect_fix_mode = mapnik.aspect_fix_mode.GROW_BBOX
|
||||
#m.srs = merc.params()
|
||||
#m.zoom_to_box(mapnik.ProjTransform(longlat, merc).forward(gpxlayer.envelope()))
|
||||
#mapnik.render_to_file(m, "out.png", "png", 1.0)
|
||||
|
||||
length = 0
|
||||
for (lon1, lat1), (lon2, lat2) in pairwise(path):
|
||||
length += haversine(lon1, lat1, lon2, lat2)
|
||||
|
||||
dpi = 96 # because we use bitmap tiles instead of vectors
|
||||
mapwidthm = float(sys.argv[2]) # map width in m
|
||||
paperwidthm = float(sys.argv[3]) # paper width in m
|
||||
earth = 6378137 # earth equator radius in m
|
||||
width = dpi / 0.0254 * paperwidthm # width in px
|
||||
zoom = math.ceil(
|
||||
math.log2(
|
||||
2
|
||||
* math.pi
|
||||
* earth
|
||||
* math.cos(math.radians((latmax + latmin) / 2))
|
||||
* width
|
||||
/ (mapwidthm * TILESIZE)
|
||||
)
|
||||
)
|
||||
subdiv = math.ceil(4*length/mapwidthm)
|
||||
subdiv = 40
|
||||
width = 15000
|
||||
print("zoom:", zoom)
|
||||
print("length:", length)
|
||||
print("subdiv:", subdiv)
|
||||
|
||||
path = [(lon2x(lon, zoom), lat2y(lat, zoom)) for lon, lat in path]
|
||||
|
||||
halfwidth = width / 2.0
|
||||
found_smoothing = False
|
||||
for smoothing in [2 ** i for i in range(30)]:
|
||||
#for smoothing in [2 ** i for i in range(30)]:
|
||||
for smoothing in [2 ** 35]:
|
||||
tck, u = interpolate.splprep(list(zip(*path)), s=smoothing)
|
||||
unew = numpy.linspace(0, 1.0, subdiv + 1)
|
||||
out = interpolate.splev(unew, tck)
|
||||
|
@ -185,6 +260,7 @@ def main(path, width, subdiv, zoom):
|
|||
have_convex = True
|
||||
break
|
||||
if have_convex:
|
||||
print("have convex")
|
||||
continue
|
||||
## check for quads that look too much like a triangle
|
||||
# have_triangle = False
|
||||
|
@ -215,6 +291,7 @@ def main(path, width, subdiv, zoom):
|
|||
):
|
||||
found_smoothing = True
|
||||
break
|
||||
print("doesn't contain path")
|
||||
if not found_smoothing:
|
||||
print("cannot find smoothing")
|
||||
exit(1)
|
||||
|
@ -243,162 +320,229 @@ def main(path, width, subdiv, zoom):
|
|||
miny = yi
|
||||
if yi > maxy:
|
||||
maxy = yi
|
||||
im1 = Image.new("RGB", (int(maxx - minx), int(maxy - miny)))
|
||||
im2 = Image.new("RGB", (int(maxx - minx), int(maxy - miny)))
|
||||
opener = urllib.request.build_opener()
|
||||
opener.addheaders = [("User-agent", "mapbender")]
|
||||
urllib.request.install_opener(opener)
|
||||
todl = []
|
||||
for i in range(int(minx / TILESIZE) - 1, int(maxx / TILESIZE) + 2):
|
||||
for j in range(int(miny / TILESIZE) - 1, int(maxy / TILESIZE) + 2):
|
||||
os.makedirs("%d/%d" % (zoom, i), exist_ok=True)
|
||||
fname = "%d/%d/%d.png" % (zoom, i, j)
|
||||
if not matplotlib.path.Path(numpy.array(polygon)).intersects_bbox(
|
||||
matplotlib.transforms.Bbox(
|
||||
[
|
||||
(i * TILESIZE, j * TILESIZE),
|
||||
(
|
||||
(i + 1) * TILESIZE,
|
||||
(j + 1) * TILESIZE,
|
||||
),
|
||||
]
|
||||
)
|
||||
):
|
||||
continue
|
||||
if not os.path.exists(fname):
|
||||
todl.append((i, j))
|
||||
for n, (i, j) in enumerate(todl):
|
||||
print("%d/%d" % (n, len(todl)))
|
||||
fname = "%d/%d/%d.png" % (zoom, i, j)
|
||||
urllib.request.urlretrieve(
|
||||
#"https://tile.openstreetmap.org/%d/%d/%d.png" % (zoom, i, j),
|
||||
#https://a.tile.thunderforest.com/cycle/17/68690/44518.png?apikey=6170aad10dfd42a38d4d8c709a53
|
||||
"https://tile.thunderforest.com/cycle/%d/%d/%d.png?apikey=d8f470ce7a8e4dd0acf39cc8fd3cf979" % (zoom, i, j),
|
||||
#"https://tile.thunderforest.com/outdoors/%d/%d/%d.png?apikey=d8f470ce7a8e4dd0acf39cc8fd3cf979" % (zoom, i, j),
|
||||
#"https://tile.thunderforest.com/landscape/%d/%d/%d.png?apikey=d8f470ce7a8e4dd0acf39cc8fd3cf979" % (zoom, i, j),
|
||||
#"https://tile.thunderforest.com/atlas/%d/%d/%d.png?apikey=d8f470ce7a8e4dd0acf39cc8fd3cf979" % (zoom, i, j),
|
||||
filename=fname,
|
||||
)
|
||||
for i in range(int(minx / TILESIZE) - 1, int(maxx / TILESIZE) + 2):
|
||||
for j in range(int(miny / TILESIZE) - 1, int(maxy / TILESIZE) + 2):
|
||||
if not matplotlib.path.Path(numpy.array(polygon)).intersects_bbox(
|
||||
matplotlib.transforms.Bbox(
|
||||
[
|
||||
(i * TILESIZE, j * TILESIZE),
|
||||
(
|
||||
(i + 1) * TILESIZE,
|
||||
(j + 1) * TILESIZE,
|
||||
),
|
||||
]
|
||||
)
|
||||
):
|
||||
continue
|
||||
fname = "%d/%d/%d.png" % (zoom, i, j)
|
||||
with Image.open(fname) as tile:
|
||||
im1.paste(tile, (int(i * TILESIZE - minx), int(j * TILESIZE - miny)))
|
||||
im2.paste(tile, (int(i * TILESIZE - minx), int(j * TILESIZE - miny)))
|
||||
draw2 = ImageDraw.Draw(im2)
|
||||
draw2.line([(xi - minx, yi - miny) for xi, yi in path], fill=(255, 0, 0), width=4)
|
||||
draw1 = ImageDraw.Draw(im1)
|
||||
draw1.line([(xi - minx, yi - miny) for xi, yi in path], fill=(255, 0, 0), width=4)
|
||||
draw1.line([(xi - minx, yi - miny) for xi, yi in zip(*out)], fill=(0, 255, 0))
|
||||
for ((p00, p01), (p10, p11), (p20, p21), (p30, p31)) in quads:
|
||||
draw1.polygon(
|
||||
[
|
||||
(p00 - minx, p01 - miny),
|
||||
(p10 - minx, p11 - miny),
|
||||
(p20 - minx, p21 - miny),
|
||||
(p30 - minx, p31 - miny),
|
||||
]
|
||||
)
|
||||
draw1.polygon([(xi - minx, yi - miny) for xi, yi in polygon], outline=(0, 0, 255))
|
||||
im1.save("out2.png")
|
||||
print(minx, maxx, miny, maxy)
|
||||
|
||||
data = []
|
||||
m = mapnik.Map(800, 600)
|
||||
mapnik.load_map_from_string(m, open("/tmp/openstreetmap-carto/mapnik.xml").read(), False, "/tmp/openstreetmap-carto/")
|
||||
gpxstyle = mapnik.Style()
|
||||
gpxrule = mapnik.Rule()
|
||||
gpxsym = mapnik.LineSymbolizer()
|
||||
gpxsym.stroke = mapnik.Color('blue')
|
||||
gpxsym.stroke_width = 5
|
||||
gpxsym.stroke_opacity = 0.5
|
||||
gpxrule.symbols.append(gpxsym)
|
||||
gpxstyle.rules.append(gpxrule)
|
||||
m.append_style('GPXStyle', gpxstyle)
|
||||
gpxlayer = mapnik.Layer('GPXLayer')
|
||||
#gpxlayer.srs =
|
||||
gpxlayer.datasource = mapnik.Ogr(file = sys.argv[1], layer = 'tracks')
|
||||
gpxlayer.styles.append('GPXStyle')
|
||||
m.layers.append(gpxlayer)
|
||||
m.aspect_fix_mode = mapnik.aspect_fix_mode.GROW_BBOX
|
||||
m.zoom_to_box(mapnik.Box2d(mapnik.Coord(minx, miny), mapnik.Coord(maxx, maxy)))
|
||||
m.srs = merc.params()
|
||||
surface = cairo.SVGSurface("out.svg", 800, 600)
|
||||
ctx = cairo.Context(surface)
|
||||
mapnik.render(m, ctx)
|
||||
for pos in zip(*out):
|
||||
pos = m.view_transform().forward(mapnik.Coord(*pos))
|
||||
ctx.line_to(pos.x, pos.y)
|
||||
ctx.set_source_rgb(0,0,0)
|
||||
ctx.stroke()
|
||||
for i, (p0, p1, p2, p3) in enumerate(quads):
|
||||
p0 = m.view_transform().forward(mapnik.Coord(*p0))
|
||||
p1 = m.view_transform().forward(mapnik.Coord(*p1))
|
||||
p2 = m.view_transform().forward(mapnik.Coord(*p2))
|
||||
p3 = m.view_transform().forward(mapnik.Coord(*p3))
|
||||
if i == 1:
|
||||
ctx.arc(p0.x, p0.y, 10, 0, 2*math.pi)
|
||||
ctx.set_source_rgb(1,0,0)
|
||||
ctx.fill()
|
||||
ctx.arc(p1.x, p1.y, 10, 0, 2*math.pi)
|
||||
ctx.set_source_rgb(0,1,0)
|
||||
ctx.fill()
|
||||
ctx.arc(p2.x, p2.y, 10, 0, 2*math.pi)
|
||||
ctx.set_source_rgb(0,0,1)
|
||||
ctx.fill()
|
||||
ctx.arc(p3.x, p3.y, 10, 0, 2*math.pi)
|
||||
ctx.set_source_rgb(1,1,0)
|
||||
ctx.fill()
|
||||
ctx.move_to(p0.x, p0.y)
|
||||
ctx.line_to(p1.x, p1.y)
|
||||
ctx.line_to(p2.x, p2.y)
|
||||
ctx.line_to(p3.x, p3.y)
|
||||
ctx.close_path()
|
||||
ctx.set_source_rgb(1,0,0)
|
||||
ctx.stroke()
|
||||
surface.finish()
|
||||
|
||||
vertices = []
|
||||
triangles = []
|
||||
for i, (off, h, (p0, p1, p2, p3)) in enumerate(zip(offs, heights, quads)):
|
||||
data.append(
|
||||
(
|
||||
(
|
||||
0,
|
||||
int(height - offs[i] - heights[i]),
|
||||
int(width),
|
||||
int(height - offs[i]),
|
||||
),
|
||||
(
|
||||
p0[0] - minx,
|
||||
p0[1] - miny,
|
||||
p1[0] - minx,
|
||||
p1[1] - miny,
|
||||
p2[0] - minx,
|
||||
p2[1] - miny,
|
||||
p3[0] - minx,
|
||||
p3[1] - miny,
|
||||
),
|
||||
)
|
||||
)
|
||||
im_out = im2.transform(
|
||||
(int(width), int(height)),
|
||||
Image.MESH,
|
||||
data,
|
||||
Image.BICUBIC,
|
||||
)
|
||||
im_out.save("out.png")
|
||||
im_out.save("out.jpg", quality=95)
|
||||
v1 = (p0[0], p0[1], width, off+h) # top right
|
||||
v2 = (p1[0], p1[1], width, off) # bottom right
|
||||
v3 = (p2[0], p2[1], 0, off) # bottom left
|
||||
v4 = (p3[0], p3[1], 0, off+h) # top left
|
||||
vertices.extend([v3, v2, v1])
|
||||
triangles.append((len(vertices)-3, len(vertices)-2, len(vertices)-1))
|
||||
vertices.extend([v3, v1, v4])
|
||||
triangles.append((len(vertices)-3, len(vertices)-2, len(vertices)-1))
|
||||
|
||||
return True
|
||||
with open("/tmp/tinshift.json", "w") as f:
|
||||
print("""
|
||||
{
|
||||
"file_type": "triangulation_file",
|
||||
"format_version": "1.0",
|
||||
"transformed_components": [ "horizontal" ],
|
||||
"fallback_strategy": "nearest",
|
||||
"vertices_columns": [ "source_x", "source_y", "target_x", "target_y" ],
|
||||
"triangles_columns": [ "idx_vertex1", "idx_vertex2", "idx_vertex3" ],
|
||||
"vertices": [ %s ],
|
||||
"triangles": [ %s ]
|
||||
}
|
||||
""" % (','.join(["[ %f, %f, %f, %f ]"%v for v in vertices]), ','.join(["[%d, %d, %d]"%t for t in triangles])), file=f)
|
||||
|
||||
tinshift = mapnik.Projection("+proj=pipeline +step +proj=webmerc +step +proj=tinshift +file=/tmp/tinshift.json")
|
||||
m = mapnik.Map(1600, int(1600*height/width))
|
||||
mapnik.load_map_from_string(m, open("/tmp/openstreetmap-carto/mapnik.xml").read(), False, "/tmp/openstreetmap-carto/")
|
||||
gpxstyle = mapnik.Style()
|
||||
gpxrule = mapnik.Rule()
|
||||
gpxsym = mapnik.LineSymbolizer()
|
||||
gpxsym.stroke = mapnik.Color('blue')
|
||||
gpxsym.stroke_width = 5
|
||||
gpxsym.stroke_opacity = 0.5
|
||||
gpxrule.symbols.append(gpxsym)
|
||||
gpxstyle.rules.append(gpxrule)
|
||||
m.append_style('GPXStyle', gpxstyle)
|
||||
gpxlayer = mapnik.Layer('GPXLayer')
|
||||
gpxlayer.datasource = mapnik.Ogr(file = sys.argv[1], layer = 'tracks')
|
||||
gpxlayer.styles.append('GPXStyle')
|
||||
m.layers.append(gpxlayer)
|
||||
m.aspect_fix_mode = mapnik.aspect_fix_mode.GROW_BBOX
|
||||
m.zoom_to_box(mapnik.Box2d(mapnik.Coord(0, 0), mapnik.Coord(width, height)))
|
||||
m.srs = tinshift.params()
|
||||
surface = cairo.PDFSurface("out.pdf", 1600, int(1600*height/width))
|
||||
mapnik.render(m, surface)
|
||||
surface.finish()
|
||||
|
||||
|
||||
#minx = math.inf
|
||||
#maxx = -1
|
||||
#miny = math.inf
|
||||
#maxy = -1
|
||||
#for (xi, yi) in polygon:
|
||||
# if xi < minx:
|
||||
# minx = xi
|
||||
# if xi > maxx:
|
||||
# maxx = xi
|
||||
# if yi < miny:
|
||||
# miny = yi
|
||||
# if yi > maxy:
|
||||
# maxy = yi
|
||||
#im1 = Image.new("RGB", (int(maxx - minx), int(maxy - miny)))
|
||||
#im2 = Image.new("RGB", (int(maxx - minx), int(maxy - miny)))
|
||||
#opener = urllib.request.build_opener()
|
||||
#opener.addheaders = [("User-agent", "mapbender")]
|
||||
#urllib.request.install_opener(opener)
|
||||
#todl = []
|
||||
#for i in range(int(minx / TILESIZE) - 1, int(maxx / TILESIZE) + 2):
|
||||
# for j in range(int(miny / TILESIZE) - 1, int(maxy / TILESIZE) + 2):
|
||||
# os.makedirs("%d/%d" % (zoom, i), exist_ok=True)
|
||||
# fname = "%d/%d/%d.png" % (zoom, i, j)
|
||||
# if not matplotlib.path.Path(numpy.array(polygon)).intersects_bbox(
|
||||
# matplotlib.transforms.Bbox(
|
||||
# [
|
||||
# (i * TILESIZE, j * TILESIZE),
|
||||
# (
|
||||
# (i + 1) * TILESIZE,
|
||||
# (j + 1) * TILESIZE,
|
||||
# ),
|
||||
# ]
|
||||
# )
|
||||
# ):
|
||||
# continue
|
||||
# if not os.path.exists(fname):
|
||||
# todl.append((i, j))
|
||||
#for n, (i, j) in enumerate(todl):
|
||||
# print("%d/%d" % (n, len(todl)))
|
||||
# fname = "%d/%d/%d.png" % (zoom, i, j)
|
||||
# urllib.request.urlretrieve(
|
||||
# #"https://tile.openstreetmap.org/%d/%d/%d.png" % (zoom, i, j),
|
||||
# #https://a.tile.thunderforest.com/cycle/17/68690/44518.png?apikey=6170aad10dfd42a38d4d8c709a53
|
||||
# "https://tile.thunderforest.com/cycle/%d/%d/%d.png?apikey=d8f470ce7a8e4dd0acf39cc8fd3cf979" % (zoom, i, j),
|
||||
# #"https://tile.thunderforest.com/outdoors/%d/%d/%d.png?apikey=d8f470ce7a8e4dd0acf39cc8fd3cf979" % (zoom, i, j),
|
||||
# #"https://tile.thunderforest.com/landscape/%d/%d/%d.png?apikey=d8f470ce7a8e4dd0acf39cc8fd3cf979" % (zoom, i, j),
|
||||
# #"https://tile.thunderforest.com/atlas/%d/%d/%d.png?apikey=d8f470ce7a8e4dd0acf39cc8fd3cf979" % (zoom, i, j),
|
||||
# filename=fname,
|
||||
# )
|
||||
#for i in range(int(minx / TILESIZE) - 1, int(maxx / TILESIZE) + 2):
|
||||
# for j in range(int(miny / TILESIZE) - 1, int(maxy / TILESIZE) + 2):
|
||||
# if not matplotlib.path.Path(numpy.array(polygon)).intersects_bbox(
|
||||
# matplotlib.transforms.Bbox(
|
||||
# [
|
||||
# (i * TILESIZE, j * TILESIZE),
|
||||
# (
|
||||
# (i + 1) * TILESIZE,
|
||||
# (j + 1) * TILESIZE,
|
||||
# ),
|
||||
# ]
|
||||
# )
|
||||
# ):
|
||||
# continue
|
||||
# fname = "%d/%d/%d.png" % (zoom, i, j)
|
||||
# with Image.open(fname) as tile:
|
||||
# im1.paste(tile, (int(i * TILESIZE - minx), int(j * TILESIZE - miny)))
|
||||
# im2.paste(tile, (int(i * TILESIZE - minx), int(j * TILESIZE - miny)))
|
||||
#draw2 = ImageDraw.Draw(im2)
|
||||
#draw2.line([(xi - minx, yi - miny) for xi, yi in path], fill=(255, 0, 0), width=4)
|
||||
#draw1 = ImageDraw.Draw(im1)
|
||||
#draw1.line([(xi - minx, yi - miny) for xi, yi in path], fill=(255, 0, 0), width=4)
|
||||
#draw1.line([(xi - minx, yi - miny) for xi, yi in zip(*out)], fill=(0, 255, 0))
|
||||
#for ((p00, p01), (p10, p11), (p20, p21), (p30, p31)) in quads:
|
||||
# draw1.polygon(
|
||||
# [
|
||||
# (p00 - minx, p01 - miny),
|
||||
# (p10 - minx, p11 - miny),
|
||||
# (p20 - minx, p21 - miny),
|
||||
# (p30 - minx, p31 - miny),
|
||||
# ]
|
||||
# )
|
||||
#draw1.polygon([(xi - minx, yi - miny) for xi, yi in polygon], outline=(0, 0, 255))
|
||||
#im1.save("out2.png")
|
||||
|
||||
#data = []
|
||||
#for i, (off, h, (p0, p1, p2, p3)) in enumerate(zip(offs, heights, quads)):
|
||||
# data.append(
|
||||
# (
|
||||
# (
|
||||
# 0,
|
||||
# int(height - offs[i] - heights[i]),
|
||||
# int(width),
|
||||
# int(height - offs[i]),
|
||||
# ),
|
||||
# (
|
||||
# p0[0] - minx,
|
||||
# p0[1] - miny,
|
||||
# p1[0] - minx,
|
||||
# p1[1] - miny,
|
||||
# p2[0] - minx,
|
||||
# p2[1] - miny,
|
||||
# p3[0] - minx,
|
||||
# p3[1] - miny,
|
||||
# ),
|
||||
# )
|
||||
# )
|
||||
#im_out = im2.transform(
|
||||
# (int(width), int(height)),
|
||||
# Image.MESH,
|
||||
# data,
|
||||
# Image.BICUBIC,
|
||||
#)
|
||||
#im_out.save("out.png")
|
||||
#im_out.save("out.jpg", quality=95)
|
||||
|
||||
#return True
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import sys
|
||||
|
||||
if len(sys.argv) != 4:
|
||||
print("usage: %s data.gpx mapwidth paperwidth" % sys.argv[0])
|
||||
exit(1)
|
||||
|
||||
zoom = 10
|
||||
latmin = math.inf
|
||||
latmax = -1
|
||||
|
||||
path = []
|
||||
with open(sys.argv[1]) as f:
|
||||
root = ET.parse(f)
|
||||
for trkpt in root.findall(
|
||||
"./gpx:trk/gpx:trkseg/gpx:trkpt",
|
||||
{"gpx": "http://www.topografix.com/GPX/1/1"},
|
||||
):
|
||||
lat = float(trkpt.attrib["lat"])
|
||||
lon = float(trkpt.attrib["lon"])
|
||||
if lat < latmin:
|
||||
latmin = lat
|
||||
if lat > latmax:
|
||||
latmax = lat
|
||||
# apply mercator projection
|
||||
path.append((lon, lat))
|
||||
|
||||
length = 0
|
||||
for (lon1, lat1), (lon2, lat2) in pairwise(path):
|
||||
length += haversine(lon1, lat1, lon2, lat2)
|
||||
|
||||
dpi = 96 # because we use bitmap tiles instead of vectors
|
||||
mapwidthm = float(sys.argv[2]) # map width in m
|
||||
paperwidthm = float(sys.argv[3]) # paper width in m
|
||||
earth = 6378137 # earth equator radius in m
|
||||
widthpx = dpi / 0.0254 * paperwidthm
|
||||
zoom = math.ceil(
|
||||
math.log2(
|
||||
2
|
||||
* math.pi
|
||||
* earth
|
||||
* math.cos(math.radians((latmax + latmin) / 2))
|
||||
* widthpx
|
||||
/ (mapwidthm * TILESIZE)
|
||||
)
|
||||
)
|
||||
subdiv = math.ceil(4*length/mapwidthm)
|
||||
print("zoom:", zoom)
|
||||
print("length:", length)
|
||||
print("subdiv:", subdiv)
|
||||
|
||||
path = [(lon2x(lon, zoom), lat2y(lat, zoom)) for lon, lat in path]
|
||||
|
||||
main(path, widthpx, subdiv, zoom)
|
||||
main()
|
||||
|
|
Loading…
Reference in a new issue