port to py3 and format with black

This commit is contained in:
Johannes Schauer Marin Rodrigues 2021-04-30 22:20:12 +02:00
parent dffa71bbdd
commit a4ced15215
Signed by: josch
GPG key ID: F2CBA5C78FBD83E1

View file

@ -20,56 +20,80 @@ from math import sqrt
import numpy as np import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from scipy import interpolate from scipy import interpolate
from itertools import tee, izip from itertools import tee
from matplotlib.patches import Polygon from matplotlib.patches import Polygon
from matplotlib.collections import PatchCollection from matplotlib.collections import PatchCollection
import matplotlib import matplotlib
from PIL import Image from PIL import Image
def y2lat(a): def y2lat(a):
return 180.0/math.pi*(2.0*math.atan(math.exp(a*math.pi/180.0))-math.pi/2.0) return (
180.0
/ math.pi
* (2.0 * math.atan(math.exp(a * math.pi / 180.0)) - math.pi / 2.0)
)
def lat2y(a): def lat2y(a):
return 180.0/math.pi*math.log(math.tan(math.pi/4.0+a*(math.pi/180.0)/2.0)) return (
180.0
/ math.pi
* math.log(math.tan(math.pi / 4.0 + a * (math.pi / 180.0) / 2.0))
)
def pairwise(iterable): def pairwise(iterable):
"s -> (s0,s1), (s1,s2), (s2,s3), ..." "s -> (s0,s1), (s1,s2), (s2,s3), ..."
a, b = tee(iterable, 2) a, b = tee(iterable, 2)
next(b, None) next(b, None)
return izip(a, b) return zip(a, b)
def triplewise(iterable): def triplewise(iterable):
"s -> (s0,s1,s2), (s1,s2,s3), (s2,s3,s4), ..." "s -> (s0,s1,s2), (s1,s2,s3), (s2,s3,s4), ..."
a,b,c = tee(iterable, 3) a, b, c = tee(iterable, 3)
next(b, None) next(b, None)
next(c, None) next(c, None)
next(c, None) next(c, None)
return izip(a,b,c) return zip(a, b, c)
# using barycentric coordinates # using barycentric coordinates
def ptInTriangle(p, p0, p1, p2): def ptInTriangle(p, p0, p1, p2):
A = 0.5 * (-p1[1] * p2[0] + p0[1] * (-p1[0] + p2[0]) + p0[0] * (p1[1] - p2[1]) + p1[0] * p2[1]); A = 0.5 * (
sign = -1 if A < 0 else 1; -p1[1] * p2[0]
s = (p0[1] * p2[0] - p0[0] * p2[1] + (p2[1] - p0[1]) * p[0] + (p0[0] - p2[0]) * p[1]) * sign; + p0[1] * (-p1[0] + p2[0])
t = (p0[0] * p1[1] - p0[1] * p1[0] + (p0[1] - p1[1]) * p[0] + (p1[0] - p0[0]) * p[1]) * sign; + p0[0] * (p1[1] - p2[1])
return s >= 0 and t >= 0 and (s + t) <= 2 * A * sign; + p1[0] * p2[1]
)
sign = -1 if A < 0 else 1
s = (
p0[1] * p2[0] - p0[0] * p2[1] + (p2[1] - p0[1]) * p[0] + (p0[0] - p2[0]) * p[1]
) * sign
t = (
p0[0] * p1[1] - p0[1] * p1[0] + (p0[1] - p1[1]) * p[0] + (p1[0] - p0[0]) * p[1]
) * sign
return s >= 0 and t >= 0 and (s + t) <= 2 * A * sign
def getxing(p0, p1, p2, p3): def getxing(p0, p1, p2, p3):
ux = p1[0]-p0[0] ux = p1[0] - p0[0]
uy = p1[1]-p0[1] uy = p1[1] - p0[1]
vx = p2[0]-p3[0] vx = p2[0] - p3[0]
vy = p2[1]-p3[1] vy = p2[1] - p3[1]
# get multiplicity of u at which u meets v # get multiplicity of u at which u meets v
a = vy*ux-vx*uy a = vy * ux - vx * uy
if a == 0: if a == 0:
# lines are parallel and never meet # lines are parallel and never meet
return None return None
s = (vy*(p3[0]-p0[0])+vx*(p0[1]-p3[1]))/a s = (vy * (p3[0] - p0[0]) + vx * (p0[1] - p3[1])) / a
if 0.0 < s < 1.0: if 0.0 < s < 1.0:
return (p0[0]+s*ux, p0[1]+s*uy) return (p0[0] + s * ux, p0[1] + s * uy)
else: else:
return None return None
# the line p0-p1 is the upper normal to the path # the line p0-p1 is the upper normal to the path
# the line p2-p3 is the lower normal to the path # the line p2-p3 is the lower normal to the path
# #
@ -88,134 +112,138 @@ def ptInQuadrilateral(p, p0, p1, p2, p3):
else: else:
return ptInTriangle(p, p0, p1, p2) or ptInTriangle(p, p2, p3, p0) return ptInTriangle(p, p0, p1, p2) or ptInTriangle(p, p2, p3, p0)
def get_st(Ax,Ay,Bx,By,Cx,Cy,Dx,Dy,Xx,Xy):
d = Bx-Ax-Cx+Dx def get_st(Ax, Ay, Bx, By, Cx, Cy, Dx, Dy, Xx, Xy):
e = By-Ay-Cy+Dy d = Bx - Ax - Cx + Dx
l = Dx-Ax e = By - Ay - Cy + Dy
g = Dy-Ay l = Dx - Ax
h = Cx-Dx g = Dy - Ay
m = Cy-Dy h = Cx - Dx
i = Xx-Dx m = Cy - Dy
j = Xy-Dy i = Xx - Dx
n = g*h-m*l j = Xy - Dy
n = g * h - m * l
# calculation for s # calculation for s
a1 = m*d-h*e a1 = m * d - h * e
b1 = n-j*d+i*e b1 = n - j * d + i * e
c1 = l*j-g*i c1 = l * j - g * i
# calculation for t # calculation for t
a2 = g*d-l*e a2 = g * d - l * e
b2 = n+j*d-i*e b2 = n + j * d - i * e
c2 = h*j-m*i c2 = h * j - m * i
s = [] s = []
if a1 == 0: if a1 == 0:
s.append(-c1/b1) s.append(-c1 / b1)
else: else:
r1 = b1*b1-4*a1*c1 r1 = b1 * b1 - 4 * a1 * c1
if r1 >= 0: if r1 >= 0:
r11 = (-b1+sqrt(r1))/(2*a1) r11 = (-b1 + sqrt(r1)) / (2 * a1)
if -0.0000000001 <= r11 <= 1.0000000001: if -0.0000000001 <= r11 <= 1.0000000001:
s.append(r11) s.append(r11)
r12 = (-b1-sqrt(r1))/(2*a1) r12 = (-b1 - sqrt(r1)) / (2 * a1)
if -0.0000000001 <= r12 <= 1.0000000001: if -0.0000000001 <= r12 <= 1.0000000001:
s.append(r12) s.append(r12)
t = [] t = []
if a2 == 0: if a2 == 0:
t.append(-c2/b2) t.append(-c2 / b2)
else: else:
r2 = b2*b2-4*a2*c2 r2 = b2 * b2 - 4 * a2 * c2
if r2 >= 0: if r2 >= 0:
r21 = (-b2+sqrt(r2))/(2*a2) r21 = (-b2 + sqrt(r2)) / (2 * a2)
if -0.0000000001 <= r21 <= 1.0000000001: if -0.0000000001 <= r21 <= 1.0000000001:
t.append(r21) t.append(r21)
r22 = (-b2-sqrt(r2))/(2*a2) r22 = (-b2 - sqrt(r2)) / (2 * a2)
if -0.0000000001 <= r22 <= 1.0000000001: if -0.0000000001 <= r22 <= 1.0000000001:
t.append(r22) t.append(r22)
if not s or not t: if not s or not t:
return [],[] return [], []
if len(s) == 1 and len(t) == 2: if len(s) == 1 and len(t) == 2:
s = [s[0],s[0]] s = [s[0], s[0]]
if len(s) == 2 and len(t) == 1: if len(s) == 2 and len(t) == 1:
t = [t[0],t[0]] t = [t[0], t[0]]
return s, t return s, t
def main(x,y,width,smoothing,subdiv):
halfwidth = width/2.0 def main(x, y, width, smoothing, subdiv):
tck,u = interpolate.splprep([x,y],s=smoothing) halfwidth = width / 2.0
unew = np.linspace(0,1.0,subdiv+1) tck, u = interpolate.splprep([x, y], s=smoothing)
out = interpolate.splev(unew,tck) unew = np.linspace(0, 1.0, subdiv + 1)
out = interpolate.splev(unew, tck)
heights = [] heights = []
offs = [] offs = []
height = 0.0 height = 0.0
for (ax,ay),(bx,by) in pairwise(zip(*out)): for (ax, ay), (bx, by) in pairwise(list(zip(*out))):
s = ax-bx s = ax - bx
t = ay-by t = ay - by
l = sqrt(s*s+t*t) l = sqrt(s * s + t * t)
offs.append(height) offs.append(height)
height += l height += l
heights.append(l) heights.append(l)
# the border of the first segment is just perpendicular to the path # the border of the first segment is just perpendicular to the path
cx = -out[1][1]+out[1][0] cx = -out[1][1] + out[1][0]
cy = out[0][1]-out[0][0] cy = out[0][1] - out[0][0]
cl = sqrt(cx*cx+cy*cy)/halfwidth cl = sqrt(cx * cx + cy * cy) / halfwidth
dx = out[1][1]-out[1][0] dx = out[1][1] - out[1][0]
dy = -out[0][1]+out[0][0] dy = -out[0][1] + out[0][0]
dl = sqrt(dx*dx+dy*dy)/halfwidth dl = sqrt(dx * dx + dy * dy) / halfwidth
px = [out[0][0]+cx/cl] px = [out[0][0] + cx / cl]
py = [out[1][0]+cy/cl] py = [out[1][0] + cy / cl]
qx = [out[0][0]+dx/dl] qx = [out[0][0] + dx / dl]
qy = [out[1][0]+dy/dl] qy = [out[1][0] + dy / dl]
for (ubx,uby),(ux,uy),(uax,uay) in triplewise(zip(*out)): for (ubx, uby), (ux, uy), (uax, uay) in triplewise(list(zip(*out))):
# get adjacent line segment vectors # get adjacent line segment vectors
ax = ux-ubx ax = ux - ubx
ay = uy-uby ay = uy - uby
bx = uax-ux bx = uax - ux
by = uay-uy by = uay - uy
# normalize length # normalize length
al = sqrt(ax*ax+ay*ay) al = sqrt(ax * ax + ay * ay)
bl = sqrt(bx*bx+by*by) bl = sqrt(bx * bx + by * by)
ax = ax/al ax = ax / al
ay = ay/al ay = ay / al
bx = bx/bl bx = bx / bl
by = by/bl by = by / bl
# get vector perpendicular to sum # get vector perpendicular to sum
cx = -ay-by cx = -ay - by
cy = ax+bx cy = ax + bx
cl = sqrt(cx*cx+cy*cy)/halfwidth cl = sqrt(cx * cx + cy * cy) / halfwidth
px.append(ux+cx/cl) px.append(ux + cx / cl)
py.append(uy+cy/cl) py.append(uy + cy / cl)
# and in the other direction # and in the other direction
dx = ay+by dx = ay + by
dy = -ax-bx dy = -ax - bx
dl = sqrt(dx*dx+dy*dy)/halfwidth dl = sqrt(dx * dx + dy * dy) / halfwidth
qx.append(ux+dx/dl) qx.append(ux + dx / dl)
qy.append(uy+dy/dl) qy.append(uy + dy / dl)
# the border of the last segment is just perpendicular to the path # the border of the last segment is just perpendicular to the path
cx = -out[1][-1]+out[1][-2] cx = -out[1][-1] + out[1][-2]
cy = out[0][-1]-out[0][-2] cy = out[0][-1] - out[0][-2]
cl = sqrt(cx*cx+cy*cy)/halfwidth cl = sqrt(cx * cx + cy * cy) / halfwidth
dx = out[1][-1]-out[1][-2] dx = out[1][-1] - out[1][-2]
dy = -out[0][-1]+out[0][-2] dy = -out[0][-1] + out[0][-2]
dl = sqrt(dx*dx+dy*dy)/halfwidth dl = sqrt(dx * dx + dy * dy) / halfwidth
px.append(out[0][-1]+cx/cl) px.append(out[0][-1] + cx / cl)
py.append(out[1][-1]+cy/cl) py.append(out[1][-1] + cy / cl)
qx.append(out[0][-1]+dx/dl) qx.append(out[0][-1] + dx / dl)
qy.append(out[1][-1]+dy/dl) qy.append(out[1][-1] + dy / dl)
quads = [] quads = []
patches = [] patches = []
for (p3x,p3y,p2x,p2y),(p0x,p0y,p1x,p1y) in pairwise(zip(px,py,qx,qy)): for (p3x, p3y, p2x, p2y), (p0x, p0y, p1x, p1y) in pairwise(
quads.append(((p0x,p0y),(p1x,p1y),(p2x,p2y),(p3x,p3y))) list(zip(px, py, qx, qy))
polygon = Polygon(((p0x,p0y),(p1x,p1y),(p2x,p2y),(p3x,p3y)), True) ):
quads.append(((p0x, p0y), (p1x, p1y), (p2x, p2y), (p3x, p3y)))
polygon = Polygon(((p0x, p0y), (p1x, p1y), (p2x, p2y), (p3x, p3y)), True)
patches.append(polygon) patches.append(polygon)
containingquad = [] containingquad = []
for pt in zip(x,y): for pt in zip(x, y):
# for each point, find the quadrilateral that contains it # for each point, find the quadrilateral that contains it
found = [] found = []
for i,(p0,p1,p2,p3) in enumerate(quads): for i, (p0, p1, p2, p3) in enumerate(quads):
if ptInQuadrilateral(pt,p0,p1,p2,p3): if ptInQuadrilateral(pt, p0, p1, p2, p3):
found.append(i) found.append(i)
if found: if found:
if len(found) > 1: if len(found) > 1:
print "point found in two quads" print("point found in two quads")
return None return None
containingquad.append(found[0]) containingquad.append(found[0])
else: else:
@ -223,34 +251,44 @@ def main(x,y,width,smoothing,subdiv):
# check if the only points for which no quad could be found are in the # check if the only points for which no quad could be found are in the
# beginning or in the end # beginning or in the end
# find the first missing ones: # find the first missing ones:
for i,q in enumerate(containingquad): for i, q in enumerate(containingquad):
if q != None: if q != None:
break break
# find the last missing ones # find the last missing ones
for j,q in izip(xrange(len(containingquad)-1, -1, -1), reversed(containingquad)): for j, q in zip(range(len(containingquad) - 1, -1, -1), reversed(containingquad)):
if q != None: if q != None:
break break
# remove the first and last missing ones # remove the first and last missing ones
if i != 0 or j != len(containingquad)-1: if i != 0 or j != len(containingquad) - 1:
containingquad = containingquad[i:j+1] containingquad = containingquad[i : j + 1]
x = x[i:j+1] x = x[i : j + 1]
y = y[i:j+1] y = y[i : j + 1]
# check if there are any remaining missing ones: # check if there are any remaining missing ones:
if None in containingquad: if None in containingquad:
print "cannot find quad for point" print("cannot find quad for point")
return None return None
for off,h in zip(offs,heights): for off, h in zip(offs, heights):
targetquad = ((0,off+h),(width,off+h),(width,off),(0,off)) targetquad = ((0, off + h), (width, off + h), (width, off), (0, off))
patches.append(Polygon(targetquad,True)) patches.append(Polygon(targetquad, True))
tx = [] tx = []
ty = [] ty = []
assert len(containingquad) == len(x) == len(y) assert len(containingquad) == len(x) == len(y)
assert len(out[0]) == len(out[1]) == len(px) == len(py) == len(qx) == len(qy) == len(quads)+1 == len(heights)+1 == len(offs)+1 assert (
for (rx,ry),i in zip(zip(x,y),containingquad): len(out[0])
== len(out[1])
== len(px)
== len(py)
== len(qx)
== len(qy)
== len(quads) + 1
== len(heights) + 1
== len(offs) + 1
)
for (rx, ry), i in zip(list(zip(x, y)), containingquad):
if i == None: if i == None:
continue continue
(ax,ay),(bx,by),(cx,cy),(dx,dy) = quads[i] (ax, ay), (bx, by), (cx, cy), (dx, dy) = quads[i]
s,t = get_st(ax,ay,bx,by,cx,cy,dx,dy,rx,ry) s, t = get_st(ax, ay, bx, by, cx, cy, dx, dy, rx, ry)
# if more than one solution, take second # if more than one solution, take second
# TODO: investigate if this is always the right solution # TODO: investigate if this is always the right solution
if len(s) != 1 or len(t) != 1: if len(s) != 1 or len(t) != 1:
@ -259,13 +297,13 @@ def main(x,y,width,smoothing,subdiv):
else: else:
s = s[0] s = s[0]
t = t[0] t = t[0]
u = s*width u = s * width
v = offs[i]+t*heights[i] v = offs[i] + t * heights[i]
tx.append(u) tx.append(u)
ty.append(v) ty.append(v)
#sx = [] # sx = []
#sy = [] # sy = []
#for ((x1,y1),(x2,y2)),((ax,ay),(bx,by),(cx,cy),(dx,dy)),off,h in zip(pairwise(zip(*out)),quads,offs,heights): # for ((x1,y1),(x2,y2)),((ax,ay),(bx,by),(cx,cy),(dx,dy)),off,h in zip(pairwise(zip(*out)),quads,offs,heights):
# s,t = get_st(ax,ay,bx,by,cx,cy,dx,dy,x1,y1) # s,t = get_st(ax,ay,bx,by,cx,cy,dx,dy,x1,y1)
# if len(s) != 1 or len(t) != 1: # if len(s) != 1 or len(t) != 1:
# return None # return None
@ -283,74 +321,90 @@ def main(x,y,width,smoothing,subdiv):
# create map with # create map with
# python -c 'import logging; logging.basicConfig(level=logging.DEBUG); from landez import ImageExporter; ie = ImageExporter(tiles_url="http://{s}.tile.opencyclemap.org/cycle/{z}/{x}/{y}.png"); ie.export_image(bbox=(8.0419921875,51.25160146817652,10.074462890625,54.03681240523652), zoomlevel=14, imagepath="image.png")' # python -c 'import logging; logging.basicConfig(level=logging.DEBUG); from landez import ImageExporter; ie = ImageExporter(tiles_url="http://{s}.tile.opencyclemap.org/cycle/{z}/{x}/{y}.png"); ie.export_image(bbox=(8.0419921875,51.25160146817652,10.074462890625,54.03681240523652), zoomlevel=14, imagepath="image.png")'
im = Image.open("map.png") im = Image.open("map.png")
bbox = [8.0419921875,51.25160146817652,10.074462890625,54.03681240523652] bbox = [8.0419921875, 51.25160146817652, 10.074462890625, 54.03681240523652]
# apply mercator projection # apply mercator projection
bbox[1] = lat2y(bbox[1]) bbox[1] = lat2y(bbox[1])
bbox[3] = lat2y(bbox[3]) bbox[3] = lat2y(bbox[3])
iw,ih = im.size iw, ih = im.size
data = [] data = []
for i,(off,h,(p0,p1,p2,p3)) in enumerate(zip(offs,heights,quads)): for i, (off, h, (p0, p1, p2, p3)) in enumerate(zip(offs, heights, quads)):
# first, account for the offset of the input image # first, account for the offset of the input image
p0 = p0[0]-bbox[0],p0[1]-bbox[1] p0 = p0[0] - bbox[0], p0[1] - bbox[1]
p1 = p1[0]-bbox[0],p1[1]-bbox[1] p1 = p1[0] - bbox[0], p1[1] - bbox[1]
p2 = p2[0]-bbox[0],p2[1]-bbox[1] p2 = p2[0] - bbox[0], p2[1] - bbox[1]
p3 = p3[0]-bbox[0],p3[1]-bbox[1] p3 = p3[0] - bbox[0], p3[1] - bbox[1]
# PIL expects coordinates in counter clockwise order # PIL expects coordinates in counter clockwise order
p1,p3 = p3,p1 p1, p3 = p3, p1
# x lon # x lon
# ----- = ----- # ----- = -----
# w bbox[2]-bbox[0] # w bbox[2]-bbox[0]
# translate to pixel coordinates # translate to pixel coordinates
p0 = (iw*p0[0])/(bbox[2]-bbox[0]),(ih*p0[1])/(bbox[3]-bbox[1]) p0 = (iw * p0[0]) / (bbox[2] - bbox[0]), (ih * p0[1]) / (bbox[3] - bbox[1])
p1 = (iw*p1[0])/(bbox[2]-bbox[0]),(ih*p1[1])/(bbox[3]-bbox[1]) p1 = (iw * p1[0]) / (bbox[2] - bbox[0]), (ih * p1[1]) / (bbox[3] - bbox[1])
p2 = (iw*p2[0])/(bbox[2]-bbox[0]),(ih*p2[1])/(bbox[3]-bbox[1]) p2 = (iw * p2[0]) / (bbox[2] - bbox[0]), (ih * p2[1]) / (bbox[3] - bbox[1])
p3 = (iw*p3[0])/(bbox[2]-bbox[0]),(ih*p3[1])/(bbox[3]-bbox[1]) p3 = (iw * p3[0]) / (bbox[2] - bbox[0]), (ih * p3[1]) / (bbox[3] - bbox[1])
# PIL starts coordinate system at the upper left corner, swap y coord # PIL starts coordinate system at the upper left corner, swap y coord
p0 = int(p0[0]),int(ih-p0[1]) p0 = int(p0[0]), int(ih - p0[1])
p1 = int(p1[0]),int(ih-p1[1]) p1 = int(p1[0]), int(ih - p1[1])
p2 = int(p2[0]),int(ih-p2[1]) p2 = int(p2[0]), int(ih - p2[1])
p3 = int(p3[0]),int(ih-p3[1]) p3 = int(p3[0]), int(ih - p3[1])
box=(0,int(ih*(height-off-h)/(bbox[3]-bbox[1])), box = (
int(iw*width/(bbox[2]-bbox[0])),int(ih*(height-off)/(bbox[3]-bbox[1]))) 0,
quad=(p0[0],p0[1],p1[0],p1[1],p2[0],p2[1],p3[0],p3[1]) int(ih * (height - off - h) / (bbox[3] - bbox[1])),
data.append((box,quad)) int(iw * width / (bbox[2] - bbox[0])),
im_out = im.transform((int(iw*width/(bbox[2]-bbox[0])),int(ih*height/(bbox[3]-bbox[1]))),Image.MESH,data,Image.BICUBIC) int(ih * (height - off) / (bbox[3] - bbox[1])),
)
quad = (p0[0], p0[1], p1[0], p1[1], p2[0], p2[1], p3[0], p3[1])
data.append((box, quad))
im_out = im.transform(
(int(iw * width / (bbox[2] - bbox[0])), int(ih * height / (bbox[3] - bbox[1]))),
Image.MESH,
data,
Image.BICUBIC,
)
im_out.save("out.png") im_out.save("out.png")
#np.random.seed(seed=0)
#colors = 100*np.random.rand(len(patches)/2)+100*np.random.rand(len(patches)/2) # np.random.seed(seed=0)
#p = PatchCollection(patches, cmap=matplotlib.cm.jet, alpha=0.4) # colors = 100*np.random.rand(len(patches)//2)+100*np.random.rand(len(patches)//2)
#p.set_array(np.array(colors)) # p = PatchCollection(patches, cmap=matplotlib.cm.jet, alpha=0.4)
#plt.figure() # p.set_array(np.array(colors))
#plt.axes().set_aspect('equal') # plt.figure()
# plt.axes().set_aspect('equal')
##plt.axhspan(0, height, xmin=0, xmax=width) ##plt.axhspan(0, height, xmin=0, xmax=width)
#fig, ax = plt.subplots() # fig, ax = plt.subplots()
##ax.add_collection(p) ##ax.add_collection(p)
#ax.set_aspect('equal') # ax.set_aspect('equal')
#plt.axis((0,width,0,height)) # plt.axis((0,width,0,height))
#plt.imshow(np.asarray(im_out),extent=[0,width,0,height]) # plt.imshow(np.asarray(im_out),extent=[0,width,0,height])
#plt.imshow(np.asarray(im),extent=[bbox[0],bbox[2],bbox[1],bbox[3]]) # plt.imshow(np.asarray(im),extent=[bbox[0],bbox[2],bbox[1],bbox[3]])
#plt.plot(x,y,out[0],out[1],px,py,qx,qy,tx,ty) # plt.plot(x,y,out[0],out[1],px,py,qx,qy,tx,ty)
#plt.show() # plt.show()
return True return True
if __name__ == '__main__':
if __name__ == "__main__":
x = [] x = []
y = [] y = []
import sys import sys
if len(sys.argv) != 5: if len(sys.argv) != 5:
print "usage: %s data.csv width smoothing N"%sys.argv[0] print("usage: %s data.csv width smoothing N" % sys.argv[0])
print "" print("")
print " data.csv whitespace delimited lon/lat pairs of points along the path" print(
print " width width of the resulting map in degrees" " data.csv whitespace delimited lon/lat pairs of points along the path"
print " smoothing curve smoothing from 0 (exact fit) to higher values (looser fit)" )
print " N amount of quads to split the path into" print(" width width of the resulting map in degrees")
print "" print(
print " example usage:" " smoothing curve smoothing from 0 (exact fit) to higher values (looser fit)"
print " %s Weser-Radweg-Hauptroute.csv 0.286 6 20"%sys.argv[0] )
print(" N amount of quads to split the path into")
print("")
print(" example usage:")
print(" %s Weser-Radweg-Hauptroute.csv 0.286 6 20" % sys.argv[0])
exit(1) exit(1)
with open(sys.argv[1]) as f: with open(sys.argv[1]) as f:
for l in f: for l in f:
a,b = l.split() a, b = l.split()
# apply mercator projection # apply mercator projection
b = lat2y(float(b)) b = lat2y(float(b))
x.append(float(a)) x.append(float(a))
@ -358,8 +412,8 @@ if __name__ == '__main__':
width = float(sys.argv[2]) width = float(sys.argv[2])
smoothing = float(sys.argv[3]) smoothing = float(sys.argv[3])
N = int(sys.argv[4]) N = int(sys.argv[4])
main(x,y,width,smoothing,N) main(x, y, width, smoothing, N)
#for smoothing in [1,2,4,8,12]: # for smoothing in [1,2,4,8,12]:
# for subdiv in range(10,30): # for subdiv in range(10,30):
# if main(x,y,width,smoothing,subdiv): # if main(x,y,width,smoothing,subdiv):
# print width,smoothing,subdiv # print width,smoothing,subdiv