disable plotting and add hint how to generate tiles

This commit is contained in:
josch 2014-06-21 14:08:12 +02:00
parent 6220549097
commit ddf598c8d9

View file

@ -280,6 +280,8 @@ def main(x,y,width,smoothing,subdiv):
# v = off+t[0]*h
# sx.append(u)
# sy.append(v)
# create map with
# python -c 'import logging; logging.basicConfig(level=logging.DEBUG); from landez import ImageExporter; ie = ImageExporter(tiles_url="http://{s}.tile.opencyclemap.org/cycle/{z}/{x}/{y}.png"); ie.export_image(bbox=(8.0419921875,51.25160146817652,10.074462890625,54.03681240523652), zoomlevel=14, imagepath="image.png")'
im = Image.open("map.png")
bbox = [8.0419921875,51.25160146817652,10.074462890625,54.03681240523652]
# apply mercator projection
@ -314,21 +316,21 @@ def main(x,y,width,smoothing,subdiv):
data.append((box,quad))
im_out = im.transform((int(iw*width/(bbox[2]-bbox[0])),int(ih*height/(bbox[3]-bbox[1]))),Image.MESH,data,Image.BICUBIC)
im_out.save("out.png")
np.random.seed(seed=0)
colors = 100*np.random.rand(len(patches)/2)+100*np.random.rand(len(patches)/2)
p = PatchCollection(patches, cmap=matplotlib.cm.jet, alpha=0.4)
p.set_array(np.array(colors))
plt.figure()
plt.axes().set_aspect('equal')
#plt.axhspan(0, height, xmin=0, xmax=width)
fig, ax = plt.subplots()
#ax.add_collection(p)
ax.set_aspect('equal')
plt.axis((0,width,0,height))
plt.imshow(np.asarray(im_out),extent=[0,width,0,height])
plt.imshow(np.asarray(im),extent=[bbox[0],bbox[2],bbox[1],bbox[3]])
plt.plot(x,y,out[0],out[1],px,py,qx,qy,tx,ty)
plt.show()
#np.random.seed(seed=0)
#colors = 100*np.random.rand(len(patches)/2)+100*np.random.rand(len(patches)/2)
#p = PatchCollection(patches, cmap=matplotlib.cm.jet, alpha=0.4)
#p.set_array(np.array(colors))
#plt.figure()
#plt.axes().set_aspect('equal')
##plt.axhspan(0, height, xmin=0, xmax=width)
#fig, ax = plt.subplots()
##ax.add_collection(p)
#ax.set_aspect('equal')
#plt.axis((0,width,0,height))
#plt.imshow(np.asarray(im_out),extent=[0,width,0,height])
#plt.imshow(np.asarray(im),extent=[bbox[0],bbox[2],bbox[1],bbox[3]])
#plt.plot(x,y,out[0],out[1],px,py,qx,qy,tx,ty)
#plt.show()
return True
if __name__ == '__main__':