Compare commits

..

No commits in common. "845a99eec4bc0cca8354abffd70d06157374ef82" and "a4ced15215d32ef96f5a35e5691d9870bca2d920" have entirely different histories.

2 changed files with 353 additions and 516 deletions

View file

@ -14,37 +14,3 @@ which will individually be transformed into rectangles which are also plotted.
On Debian systems you need the following packages: On Debian systems you need the following packages:
apt-get install python python-pil python-scipy python-tk python-matplotlib python-numpy apt-get install python python-pil python-scipy python-tk python-matplotlib python-numpy
how to setup postgresql+postgis locally without root
----------------------------------------------------
/usr/lib/postgresql/14/bin/initdb -D /tmp/postgres
/usr/lib/postgresql/14/bin/postgres --port=5433 --unix_socket_directories=/tmp/postgres -D /tmp/postgres &
/usr/lib/postgresql/14/bin/createdb --port=5433 --host=/tmp/postgres gis
/usr/lib/postgresql/14/bin/psql --port=5433 --host=/tmp/postgres gis -c 'CREATE EXTENSION postgis;' -c 'CREATE EXTENSION hstore;'
osm2pgsql --port=5433 --host=/tmp/postgres -d gis --create --slim -G --hstore --tag-transform-script /tmp/openstreetmap-carto/openstreetmap-carto.lua -S /tmp/openstreetmap-carto/openstreetmap-carto.style ~/Downloads/map.xml
/usr/lib/postgresql/14/bin/psql --port=5433 --host=/tmp/postgres gis -f /tmp/openstreetmap-carto/indexes.sql
openstreetmap-carto:
scripts/get-external-data.py --port=5433 --host=/tmp/postgres
diff --git a/project.mml b/project.mml
index 7fb3d47..d8014f8 100644
--- a/project.mml
+++ b/project.mml
@@ -27,6 +27,8 @@ _parts:
osm2pgsql: &osm2pgsql
type: "postgis"
dbname: "gis"
+ port: "5433"
+ host: "/tmp/postgres"
key_field: ""
geometry_field: "way"
extent: "-20037508,-20037508,20037508,20037508"
# the database connection settings are part of the style xml!
carto project.mml > mapnik.xml
nik4 --url https://www.openstreetmap.org/\#map\=12/49.7731/9.6726 /tmp/openstreetmap-carto/mapnik.xml screenshot.svg

View file

@ -1,4 +1,4 @@
#!/usr/bin/env python3 #!/usr/bin/env python
# #
# Copyright (C) 2014 - 2021 Johannes Schauer Marin Rodrigues <josch@mister-muffin.de> # Copyright (C) 2014 - 2021 Johannes Schauer Marin Rodrigues <josch@mister-muffin.de>
# #
@ -15,44 +15,32 @@
# You should have received a copy of the GNU General Public License # You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>. # along with this program. If not, see <http://www.gnu.org/licenses/>.
import os
import math import math
from math import sqrt from math import sqrt
import numpy import numpy as np
import matplotlib.pyplot as plt
from scipy import interpolate from scipy import interpolate
from itertools import tee from itertools import tee
from PIL import Image, ImageDraw from matplotlib.patches import Polygon
import urllib.request from matplotlib.collections import PatchCollection
import matplotlib.path import matplotlib
import matplotlib.transforms from PIL import Image
import xml.etree.ElementTree as ET
import mapnik
import cairo
TILESIZE = 256
EARTHRADIUS = 6378137
def haversine(lon1, lat1, lon2, lat2): def y2lat(a):
lon1 = math.radians(lon1) return (
lat1 = math.radians(lat1) 180.0
lon2 = math.radians(lon2) / math.pi
lat2 = math.radians(lat2) * (2.0 * math.atan(math.exp(a * math.pi / 180.0)) - math.pi / 2.0)
dlon = lon2 - lon1
dlat = lat2 - lat1
a = (
math.sin(dlat / 2) ** 2
+ math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2
) )
return EARTHRADIUS * 2 * math.asin(math.sqrt(a))
def lat2y(lat, zoom): def lat2y(a):
return math.log(math.tan(math.pi / 4 + math.radians(lat) / 2)) * EARTHRADIUS return (
180.0
/ math.pi
def lon2x(lon, zoom): * math.log(math.tan(math.pi / 4.0 + a * (math.pi / 180.0) / 2.0))
return math.radians(lon) * EARTHRADIUS )
def pairwise(iterable): def pairwise(iterable):
@ -71,230 +59,220 @@ def triplewise(iterable):
return zip(a, b, c) return zip(a, b, c)
def intersects(p0, p1, p2, p3): # using barycentric coordinates
s10_x = p1[0] - p0[0] def ptInTriangle(p, p0, p1, p2):
s10_y = p1[1] - p0[1] A = 0.5 * (
s32_x = p3[0] - p2[0] -p1[1] * p2[0]
s32_y = p3[1] - p2[1] + p0[1] * (-p1[0] + p2[0])
+ p0[0] * (p1[1] - p2[1])
denom = s10_x * s32_y - s32_x * s10_y + p1[0] * p2[1]
if denom == 0:
return False # collinear
denom_is_positive = denom > 0
s02_x = p0[0] - p2[0]
s02_y = p0[1] - p2[1]
s_numer = s10_x * s02_y - s10_y * s02_x
if (s_numer < 0) == denom_is_positive:
return False # no collision
t_numer = s32_x * s02_y - s32_y * s02_x
if (t_numer < 0) == denom_is_positive:
return False # no collision
if (s_numer > denom) == denom_is_positive or (t_numer > denom) == denom_is_positive:
return False # no collision
return True
def main():
import sys
if len(sys.argv) != 4:
print("usage: %s data.gpx mapwidth paperwidth" % sys.argv[0])
exit(1)
zoom = 10
latmin = math.inf
latmax = -1
path = []
with open(sys.argv[1]) as f:
root = ET.parse(f)
for trkpt in root.findall(
"./gpx:trk/gpx:trkseg/gpx:trkpt",
{"gpx": "http://www.topografix.com/GPX/1/1"},
):
lat = float(trkpt.attrib["lat"])
lon = float(trkpt.attrib["lon"])
if lat < latmin:
latmin = lat
if lat > latmax:
latmax = lat
# apply mercator projection
path.append((lon, lat))
merc = mapnik.Projection('+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs +over')
longlat = mapnik.Projection('+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs')
#m = mapnik.Map(800, 600)
#mapnik.load_map_from_string(m, open("/tmp/openstreetmap-carto/mapnik.xml").read(), False, "/tmp/openstreetmap-carto/")
#gpxstyle = mapnik.Style()
#gpxrule = mapnik.Rule()
#gpxsym = mapnik.LineSymbolizer()
#gpxsym.stroke = mapnik.Color('red')
#gpxsym.stroke_width = 5
#gpxsym.stroke_opacity = 0.5
#gpxrule.symbols.append(gpxsym)
#gpxstyle.rules.append(gpxrule)
#m.append_style('GPXStyle', gpxstyle)
#gpxlayer = mapnik.Layer('GPXLayer')
##gpxlayer.srs =
#gpxlayer.datasource = mapnik.Ogr(file = sys.argv[1], layer = 'tracks')
#gpxlayer.styles.append('GPXStyle')
#m.layers.append(gpxlayer)
#m.aspect_fix_mode = mapnik.aspect_fix_mode.GROW_BBOX
#m.srs = merc.params()
#m.zoom_to_box(mapnik.ProjTransform(longlat, merc).forward(gpxlayer.envelope()))
#mapnik.render_to_file(m, "out.png", "png", 1.0)
length = 0
for (lon1, lat1), (lon2, lat2) in pairwise(path):
length += haversine(lon1, lat1, lon2, lat2)
dpi = 96 # because we use bitmap tiles instead of vectors
mapwidthm = float(sys.argv[2]) # map width in m
paperwidthm = float(sys.argv[3]) # paper width in m
earth = 6378137 # earth equator radius in m
width = dpi / 0.0254 * paperwidthm # width in px
zoom = math.ceil(
math.log2(
2
* math.pi
* earth
* math.cos(math.radians((latmax + latmin) / 2))
* width
/ (mapwidthm * TILESIZE)
)
) )
subdiv = math.ceil(4*length/mapwidthm) sign = -1 if A < 0 else 1
subdiv = 40 s = (
width = 15000 p0[1] * p2[0] - p0[0] * p2[1] + (p2[1] - p0[1]) * p[0] + (p0[0] - p2[0]) * p[1]
print("zoom:", zoom) ) * sign
print("length:", length) t = (
print("subdiv:", subdiv) p0[0] * p1[1] - p0[1] * p1[0] + (p0[1] - p1[1]) * p[0] + (p1[0] - p0[0]) * p[1]
) * sign
return s >= 0 and t >= 0 and (s + t) <= 2 * A * sign
path = [(lon2x(lon, zoom), lat2y(lat, zoom)) for lon, lat in path]
def getxing(p0, p1, p2, p3):
ux = p1[0] - p0[0]
uy = p1[1] - p0[1]
vx = p2[0] - p3[0]
vy = p2[1] - p3[1]
# get multiplicity of u at which u meets v
a = vy * ux - vx * uy
if a == 0:
# lines are parallel and never meet
return None
s = (vy * (p3[0] - p0[0]) + vx * (p0[1] - p3[1])) / a
if 0.0 < s < 1.0:
return (p0[0] + s * ux, p0[1] + s * uy)
else:
return None
# the line p0-p1 is the upper normal to the path
# the line p2-p3 is the lower normal to the path
#
# | | |
# p0--------|--------p1
# | | |
# | | |
# p3--------|--------p2
# | | |
def ptInQuadrilateral(p, p0, p1, p2, p3):
# it might be that the two normals cross at some point
# in that case the two triangles are created differently
cross = getxing(p0, p1, p2, p3)
if cross:
return ptInTriangle(p, p0, cross, p3) or ptInTriangle(p, p2, cross, p1)
else:
return ptInTriangle(p, p0, p1, p2) or ptInTriangle(p, p2, p3, p0)
def get_st(Ax, Ay, Bx, By, Cx, Cy, Dx, Dy, Xx, Xy):
d = Bx - Ax - Cx + Dx
e = By - Ay - Cy + Dy
l = Dx - Ax
g = Dy - Ay
h = Cx - Dx
m = Cy - Dy
i = Xx - Dx
j = Xy - Dy
n = g * h - m * l
# calculation for s
a1 = m * d - h * e
b1 = n - j * d + i * e
c1 = l * j - g * i
# calculation for t
a2 = g * d - l * e
b2 = n + j * d - i * e
c2 = h * j - m * i
s = []
if a1 == 0:
s.append(-c1 / b1)
else:
r1 = b1 * b1 - 4 * a1 * c1
if r1 >= 0:
r11 = (-b1 + sqrt(r1)) / (2 * a1)
if -0.0000000001 <= r11 <= 1.0000000001:
s.append(r11)
r12 = (-b1 - sqrt(r1)) / (2 * a1)
if -0.0000000001 <= r12 <= 1.0000000001:
s.append(r12)
t = []
if a2 == 0:
t.append(-c2 / b2)
else:
r2 = b2 * b2 - 4 * a2 * c2
if r2 >= 0:
r21 = (-b2 + sqrt(r2)) / (2 * a2)
if -0.0000000001 <= r21 <= 1.0000000001:
t.append(r21)
r22 = (-b2 - sqrt(r2)) / (2 * a2)
if -0.0000000001 <= r22 <= 1.0000000001:
t.append(r22)
if not s or not t:
return [], []
if len(s) == 1 and len(t) == 2:
s = [s[0], s[0]]
if len(s) == 2 and len(t) == 1:
t = [t[0], t[0]]
return s, t
def main(x, y, width, smoothing, subdiv):
halfwidth = width / 2.0 halfwidth = width / 2.0
found_smoothing = False tck, u = interpolate.splprep([x, y], s=smoothing)
#for smoothing in [2 ** i for i in range(30)]: unew = np.linspace(0, 1.0, subdiv + 1)
for smoothing in [2 ** 35]: out = interpolate.splev(unew, tck)
tck, u = interpolate.splprep(list(zip(*path)), s=smoothing) heights = []
unew = numpy.linspace(0, 1.0, subdiv + 1) offs = []
out = interpolate.splev(unew, tck) height = 0.0
# prepend and append a segment for (ax, ay), (bx, by) in pairwise(list(zip(*out))):
out = ( s = ax - bx
[2 * out[0][0] - out[0][1]] + list(out[0]) + [2 * out[0][-1] - out[0][-2]], t = ay - by
[2 * out[1][0] - out[1][1]] + list(out[1]) + [2 * out[1][-1] - out[1][-2]], l = sqrt(s * s + t * t)
) offs.append(height)
heights = [] height += l
offs = [] heights.append(l)
height = 0.0 # the border of the first segment is just perpendicular to the path
for (ax, ay), (bx, by) in pairwise(zip(*out)): cx = -out[1][1] + out[1][0]
s = ax - bx cy = out[0][1] - out[0][0]
t = ay - by cl = sqrt(cx * cx + cy * cy) / halfwidth
l = sqrt(s * s + t * t) dx = out[1][1] - out[1][0]
offs.append(height) dy = -out[0][1] + out[0][0]
height += l dl = sqrt(dx * dx + dy * dy) / halfwidth
heights.append(l) px = [out[0][0] + cx / cl]
# the border of the first segment is just perpendicular to the path py = [out[1][0] + cy / cl]
cx = -out[1][1] + out[1][0] qx = [out[0][0] + dx / dl]
cy = out[0][1] - out[0][0] qy = [out[1][0] + dy / dl]
for (ubx, uby), (ux, uy), (uax, uay) in triplewise(list(zip(*out))):
# get adjacent line segment vectors
ax = ux - ubx
ay = uy - uby
bx = uax - ux
by = uay - uy
# normalize length
al = sqrt(ax * ax + ay * ay)
bl = sqrt(bx * bx + by * by)
ax = ax / al
ay = ay / al
bx = bx / bl
by = by / bl
# get vector perpendicular to sum
cx = -ay - by
cy = ax + bx
cl = sqrt(cx * cx + cy * cy) / halfwidth cl = sqrt(cx * cx + cy * cy) / halfwidth
dx = out[1][1] - out[1][0] px.append(ux + cx / cl)
dy = -out[0][1] + out[0][0] py.append(uy + cy / cl)
# and in the other direction
dx = ay + by
dy = -ax - bx
dl = sqrt(dx * dx + dy * dy) / halfwidth dl = sqrt(dx * dx + dy * dy) / halfwidth
px = [out[0][0] + cx / cl] qx.append(ux + dx / dl)
py = [out[1][0] + cy / cl] qy.append(uy + dy / dl)
qx = [out[0][0] + dx / dl] # the border of the last segment is just perpendicular to the path
qy = [out[1][0] + dy / dl] cx = -out[1][-1] + out[1][-2]
for (ubx, uby), (ux, uy), (uax, uay) in triplewise(zip(*out)): cy = out[0][-1] - out[0][-2]
# get adjacent line segment vectors cl = sqrt(cx * cx + cy * cy) / halfwidth
ax = ux - ubx dx = out[1][-1] - out[1][-2]
ay = uy - uby dy = -out[0][-1] + out[0][-2]
bx = uax - ux dl = sqrt(dx * dx + dy * dy) / halfwidth
by = uay - uy px.append(out[0][-1] + cx / cl)
# normalize length py.append(out[1][-1] + cy / cl)
al = sqrt(ax * ax + ay * ay) qx.append(out[0][-1] + dx / dl)
bl = sqrt(bx * bx + by * by) qy.append(out[1][-1] + dy / dl)
ax = ax / al quads = []
ay = ay / al patches = []
bx = bx / bl for (p3x, p3y, p2x, p2y), (p0x, p0y, p1x, p1y) in pairwise(
by = by / bl list(zip(px, py, qx, qy))
# get vector perpendicular to sum ):
cx = -ay - by quads.append(((p0x, p0y), (p1x, p1y), (p2x, p2y), (p3x, p3y)))
cy = ax + bx polygon = Polygon(((p0x, p0y), (p1x, p1y), (p2x, p2y), (p3x, p3y)), True)
cl = sqrt(cx * cx + cy * cy) / halfwidth patches.append(polygon)
px.append(ux + cx / cl) containingquad = []
py.append(uy + cy / cl) for pt in zip(x, y):
# and in the other direction # for each point, find the quadrilateral that contains it
dx = ay + by found = []
dy = -ax - bx for i, (p0, p1, p2, p3) in enumerate(quads):
dl = sqrt(dx * dx + dy * dy) / halfwidth if ptInQuadrilateral(pt, p0, p1, p2, p3):
qx.append(ux + dx / dl) found.append(i)
qy.append(uy + dy / dl) if found:
# the border of the last segment is just perpendicular to the path if len(found) > 1:
cx = -out[1][-1] + out[1][-2] print("point found in two quads")
cy = out[0][-1] - out[0][-2] return None
cl = sqrt(cx * cx + cy * cy) / halfwidth containingquad.append(found[0])
dx = out[1][-1] - out[1][-2] else:
dy = -out[0][-1] + out[0][-2] containingquad.append(None)
dl = sqrt(dx * dx + dy * dy) / halfwidth # check if the only points for which no quad could be found are in the
px.append(out[0][-1] + cx / cl) # beginning or in the end
py.append(out[1][-1] + cy / cl) # find the first missing ones:
qx.append(out[0][-1] + dx / dl) for i, q in enumerate(containingquad):
qy.append(out[1][-1] + dy / dl) if q != None:
quads = []
for (p2x, p2y, p1x, p1y), (p3x, p3y, p0x, p0y) in pairwise(zip(px, py, qx, qy)):
quads.append(((p0x, p0y), (p1x, p1y), (p2x, p2y), (p3x, p3y)))
# check for convex quads (sides intersect)
have_convex = False
for (p0, p1, p2, p3) in quads:
if intersects(p0, p3, p1, p2):
have_convex = True
break
if have_convex:
print("have convex")
continue
## check for quads that look too much like a triangle
# have_triangle = False
# for ((p00, p01), (p10, p11), (p20, p21), (p30, p31)) in quads:
# len1 = sqrt((p10-p00)**2+(p11-p01)**2)
# len2 = sqrt((p30-p20)**2+(p31-p21)**2)
# if len1/len2 > 100:
# have_triangle = True
# break
# if len2/len1 < 1/100:
# have_triangle = True
# break
# if have_triangle:
# continue
# draw
polygon = []
for ((p00, p01), (p10, p11), (p20, p21), (p30, p31)) in quads:
polygon.append((p10, p11))
polygon.append((p00, p01))
for ((p00, p01), (p10, p11), (p20, p21), (p30, p31)) in reversed(quads):
polygon.append((p30, p31))
polygon.append((p20, p21))
polygon.append(polygon[0])
# check if path is inside polygon
if matplotlib.path.Path(polygon).contains_path(
matplotlib.path.Path(path)
):
found_smoothing = True
break break
print("doesn't contain path") # find the last missing ones
if not found_smoothing: for j, q in zip(range(len(containingquad) - 1, -1, -1), reversed(containingquad)):
print("cannot find smoothing") if q != None:
exit(1) break
# remove the first and last missing ones
if i != 0 or j != len(containingquad) - 1:
containingquad = containingquad[i : j + 1]
x = x[i : j + 1]
y = y[i : j + 1]
# check if there are any remaining missing ones:
if None in containingquad:
print("cannot find quad for point")
return None
for off, h in zip(offs, heights):
targetquad = ((0, off + h), (width, off + h), (width, off), (0, off))
patches.append(Polygon(targetquad, True))
tx = []
ty = []
assert len(containingquad) == len(x) == len(y)
assert ( assert (
len(out[0]) len(out[0])
== len(out[1]) == len(out[1])
@ -306,243 +284,136 @@ def main():
== len(heights) + 1 == len(heights) + 1
== len(offs) + 1 == len(offs) + 1
) )
for (rx, ry), i in zip(list(zip(x, y)), containingquad):
minx = math.inf if i == None:
maxx = -1 continue
miny = math.inf (ax, ay), (bx, by), (cx, cy), (dx, dy) = quads[i]
maxy = -1 s, t = get_st(ax, ay, bx, by, cx, cy, dx, dy, rx, ry)
for (xi, yi) in polygon: # if more than one solution, take second
if xi < minx: # TODO: investigate if this is always the right solution
minx = xi if len(s) != 1 or len(t) != 1:
if xi > maxx: s = s[1]
maxx = xi t = t[1]
if yi < miny: else:
miny = yi s = s[0]
if yi > maxy: t = t[0]
maxy = yi u = s * width
print(minx, maxx, miny, maxy) v = offs[i] + t * heights[i]
tx.append(u)
m = mapnik.Map(800, 600) ty.append(v)
mapnik.load_map_from_string(m, open("/tmp/openstreetmap-carto/mapnik.xml").read(), False, "/tmp/openstreetmap-carto/") # sx = []
gpxstyle = mapnik.Style() # sy = []
gpxrule = mapnik.Rule() # for ((x1,y1),(x2,y2)),((ax,ay),(bx,by),(cx,cy),(dx,dy)),off,h in zip(pairwise(zip(*out)),quads,offs,heights):
gpxsym = mapnik.LineSymbolizer() # s,t = get_st(ax,ay,bx,by,cx,cy,dx,dy,x1,y1)
gpxsym.stroke = mapnik.Color('blue') # if len(s) != 1 or len(t) != 1:
gpxsym.stroke_width = 5 # return None
gpxsym.stroke_opacity = 0.5 # u = s[0]*width
gpxrule.symbols.append(gpxsym) # v = off+t[0]*h
gpxstyle.rules.append(gpxrule) # sx.append(u)
m.append_style('GPXStyle', gpxstyle) # sy.append(v)
gpxlayer = mapnik.Layer('GPXLayer') # s,t = get_st(ax,ay,bx,by,cx,cy,dx,dy,x2,y2)
#gpxlayer.srs = # if len(s) != 1 or len(t) != 1:
gpxlayer.datasource = mapnik.Ogr(file = sys.argv[1], layer = 'tracks') # return None
gpxlayer.styles.append('GPXStyle') # u = s[0]*width
m.layers.append(gpxlayer) # v = off+t[0]*h
m.aspect_fix_mode = mapnik.aspect_fix_mode.GROW_BBOX # sx.append(u)
m.zoom_to_box(mapnik.Box2d(mapnik.Coord(minx, miny), mapnik.Coord(maxx, maxy))) # sy.append(v)
m.srs = merc.params() # create map with
surface = cairo.SVGSurface("out.svg", 800, 600) # python -c 'import logging; logging.basicConfig(level=logging.DEBUG); from landez import ImageExporter; ie = ImageExporter(tiles_url="http://{s}.tile.opencyclemap.org/cycle/{z}/{x}/{y}.png"); ie.export_image(bbox=(8.0419921875,51.25160146817652,10.074462890625,54.03681240523652), zoomlevel=14, imagepath="image.png")'
ctx = cairo.Context(surface) im = Image.open("map.png")
mapnik.render(m, ctx) bbox = [8.0419921875, 51.25160146817652, 10.074462890625, 54.03681240523652]
for pos in zip(*out): # apply mercator projection
pos = m.view_transform().forward(mapnik.Coord(*pos)) bbox[1] = lat2y(bbox[1])
ctx.line_to(pos.x, pos.y) bbox[3] = lat2y(bbox[3])
ctx.set_source_rgb(0,0,0) iw, ih = im.size
ctx.stroke() data = []
for i, (p0, p1, p2, p3) in enumerate(quads):
p0 = m.view_transform().forward(mapnik.Coord(*p0))
p1 = m.view_transform().forward(mapnik.Coord(*p1))
p2 = m.view_transform().forward(mapnik.Coord(*p2))
p3 = m.view_transform().forward(mapnik.Coord(*p3))
if i == 1:
ctx.arc(p0.x, p0.y, 10, 0, 2*math.pi)
ctx.set_source_rgb(1,0,0)
ctx.fill()
ctx.arc(p1.x, p1.y, 10, 0, 2*math.pi)
ctx.set_source_rgb(0,1,0)
ctx.fill()
ctx.arc(p2.x, p2.y, 10, 0, 2*math.pi)
ctx.set_source_rgb(0,0,1)
ctx.fill()
ctx.arc(p3.x, p3.y, 10, 0, 2*math.pi)
ctx.set_source_rgb(1,1,0)
ctx.fill()
ctx.move_to(p0.x, p0.y)
ctx.line_to(p1.x, p1.y)
ctx.line_to(p2.x, p2.y)
ctx.line_to(p3.x, p3.y)
ctx.close_path()
ctx.set_source_rgb(1,0,0)
ctx.stroke()
surface.finish()
vertices = []
triangles = []
for i, (off, h, (p0, p1, p2, p3)) in enumerate(zip(offs, heights, quads)): for i, (off, h, (p0, p1, p2, p3)) in enumerate(zip(offs, heights, quads)):
v1 = (p0[0], p0[1], width, off+h) # top right # first, account for the offset of the input image
v2 = (p1[0], p1[1], width, off) # bottom right p0 = p0[0] - bbox[0], p0[1] - bbox[1]
v3 = (p2[0], p2[1], 0, off) # bottom left p1 = p1[0] - bbox[0], p1[1] - bbox[1]
v4 = (p3[0], p3[1], 0, off+h) # top left p2 = p2[0] - bbox[0], p2[1] - bbox[1]
vertices.extend([v3, v2, v1]) p3 = p3[0] - bbox[0], p3[1] - bbox[1]
triangles.append((len(vertices)-3, len(vertices)-2, len(vertices)-1)) # PIL expects coordinates in counter clockwise order
vertices.extend([v3, v1, v4]) p1, p3 = p3, p1
triangles.append((len(vertices)-3, len(vertices)-2, len(vertices)-1)) # x lon
# ----- = -----
# w bbox[2]-bbox[0]
# translate to pixel coordinates
p0 = (iw * p0[0]) / (bbox[2] - bbox[0]), (ih * p0[1]) / (bbox[3] - bbox[1])
p1 = (iw * p1[0]) / (bbox[2] - bbox[0]), (ih * p1[1]) / (bbox[3] - bbox[1])
p2 = (iw * p2[0]) / (bbox[2] - bbox[0]), (ih * p2[1]) / (bbox[3] - bbox[1])
p3 = (iw * p3[0]) / (bbox[2] - bbox[0]), (ih * p3[1]) / (bbox[3] - bbox[1])
# PIL starts coordinate system at the upper left corner, swap y coord
p0 = int(p0[0]), int(ih - p0[1])
p1 = int(p1[0]), int(ih - p1[1])
p2 = int(p2[0]), int(ih - p2[1])
p3 = int(p3[0]), int(ih - p3[1])
box = (
0,
int(ih * (height - off - h) / (bbox[3] - bbox[1])),
int(iw * width / (bbox[2] - bbox[0])),
int(ih * (height - off) / (bbox[3] - bbox[1])),
)
quad = (p0[0], p0[1], p1[0], p1[1], p2[0], p2[1], p3[0], p3[1])
data.append((box, quad))
im_out = im.transform(
(int(iw * width / (bbox[2] - bbox[0])), int(ih * height / (bbox[3] - bbox[1]))),
Image.MESH,
data,
Image.BICUBIC,
)
im_out.save("out.png")
with open("/tmp/tinshift.json", "w") as f: # np.random.seed(seed=0)
print(""" # colors = 100*np.random.rand(len(patches)//2)+100*np.random.rand(len(patches)//2)
{ # p = PatchCollection(patches, cmap=matplotlib.cm.jet, alpha=0.4)
"file_type": "triangulation_file", # p.set_array(np.array(colors))
"format_version": "1.0", # plt.figure()
"transformed_components": [ "horizontal" ], # plt.axes().set_aspect('equal')
"fallback_strategy": "nearest", ##plt.axhspan(0, height, xmin=0, xmax=width)
"vertices_columns": [ "source_x", "source_y", "target_x", "target_y" ], # fig, ax = plt.subplots()
"triangles_columns": [ "idx_vertex1", "idx_vertex2", "idx_vertex3" ], ##ax.add_collection(p)
"vertices": [ %s ], # ax.set_aspect('equal')
"triangles": [ %s ] # plt.axis((0,width,0,height))
} # plt.imshow(np.asarray(im_out),extent=[0,width,0,height])
""" % (','.join(["[ %f, %f, %f, %f ]"%v for v in vertices]), ','.join(["[%d, %d, %d]"%t for t in triangles])), file=f) # plt.imshow(np.asarray(im),extent=[bbox[0],bbox[2],bbox[1],bbox[3]])
# plt.plot(x,y,out[0],out[1],px,py,qx,qy,tx,ty)
tinshift = mapnik.Projection("+proj=pipeline +step +proj=webmerc +step +proj=tinshift +file=/tmp/tinshift.json") # plt.show()
m = mapnik.Map(1600, int(1600*height/width)) return True
mapnik.load_map_from_string(m, open("/tmp/openstreetmap-carto/mapnik.xml").read(), False, "/tmp/openstreetmap-carto/")
gpxstyle = mapnik.Style()
gpxrule = mapnik.Rule()
gpxsym = mapnik.LineSymbolizer()
gpxsym.stroke = mapnik.Color('blue')
gpxsym.stroke_width = 5
gpxsym.stroke_opacity = 0.5
gpxrule.symbols.append(gpxsym)
gpxstyle.rules.append(gpxrule)
m.append_style('GPXStyle', gpxstyle)
gpxlayer = mapnik.Layer('GPXLayer')
gpxlayer.datasource = mapnik.Ogr(file = sys.argv[1], layer = 'tracks')
gpxlayer.styles.append('GPXStyle')
m.layers.append(gpxlayer)
m.aspect_fix_mode = mapnik.aspect_fix_mode.GROW_BBOX
m.zoom_to_box(mapnik.Box2d(mapnik.Coord(0, 0), mapnik.Coord(width, height)))
m.srs = tinshift.params()
surface = cairo.PDFSurface("out.pdf", 1600, int(1600*height/width))
mapnik.render(m, surface)
surface.finish()
#minx = math.inf
#maxx = -1
#miny = math.inf
#maxy = -1
#for (xi, yi) in polygon:
# if xi < minx:
# minx = xi
# if xi > maxx:
# maxx = xi
# if yi < miny:
# miny = yi
# if yi > maxy:
# maxy = yi
#im1 = Image.new("RGB", (int(maxx - minx), int(maxy - miny)))
#im2 = Image.new("RGB", (int(maxx - minx), int(maxy - miny)))
#opener = urllib.request.build_opener()
#opener.addheaders = [("User-agent", "mapbender")]
#urllib.request.install_opener(opener)
#todl = []
#for i in range(int(minx / TILESIZE) - 1, int(maxx / TILESIZE) + 2):
# for j in range(int(miny / TILESIZE) - 1, int(maxy / TILESIZE) + 2):
# os.makedirs("%d/%d" % (zoom, i), exist_ok=True)
# fname = "%d/%d/%d.png" % (zoom, i, j)
# if not matplotlib.path.Path(numpy.array(polygon)).intersects_bbox(
# matplotlib.transforms.Bbox(
# [
# (i * TILESIZE, j * TILESIZE),
# (
# (i + 1) * TILESIZE,
# (j + 1) * TILESIZE,
# ),
# ]
# )
# ):
# continue
# if not os.path.exists(fname):
# todl.append((i, j))
#for n, (i, j) in enumerate(todl):
# print("%d/%d" % (n, len(todl)))
# fname = "%d/%d/%d.png" % (zoom, i, j)
# urllib.request.urlretrieve(
# #"https://tile.openstreetmap.org/%d/%d/%d.png" % (zoom, i, j),
# #https://a.tile.thunderforest.com/cycle/17/68690/44518.png?apikey=6170aad10dfd42a38d4d8c709a53
# "https://tile.thunderforest.com/cycle/%d/%d/%d.png?apikey=d8f470ce7a8e4dd0acf39cc8fd3cf979" % (zoom, i, j),
# #"https://tile.thunderforest.com/outdoors/%d/%d/%d.png?apikey=d8f470ce7a8e4dd0acf39cc8fd3cf979" % (zoom, i, j),
# #"https://tile.thunderforest.com/landscape/%d/%d/%d.png?apikey=d8f470ce7a8e4dd0acf39cc8fd3cf979" % (zoom, i, j),
# #"https://tile.thunderforest.com/atlas/%d/%d/%d.png?apikey=d8f470ce7a8e4dd0acf39cc8fd3cf979" % (zoom, i, j),
# filename=fname,
# )
#for i in range(int(minx / TILESIZE) - 1, int(maxx / TILESIZE) + 2):
# for j in range(int(miny / TILESIZE) - 1, int(maxy / TILESIZE) + 2):
# if not matplotlib.path.Path(numpy.array(polygon)).intersects_bbox(
# matplotlib.transforms.Bbox(
# [
# (i * TILESIZE, j * TILESIZE),
# (
# (i + 1) * TILESIZE,
# (j + 1) * TILESIZE,
# ),
# ]
# )
# ):
# continue
# fname = "%d/%d/%d.png" % (zoom, i, j)
# with Image.open(fname) as tile:
# im1.paste(tile, (int(i * TILESIZE - minx), int(j * TILESIZE - miny)))
# im2.paste(tile, (int(i * TILESIZE - minx), int(j * TILESIZE - miny)))
#draw2 = ImageDraw.Draw(im2)
#draw2.line([(xi - minx, yi - miny) for xi, yi in path], fill=(255, 0, 0), width=4)
#draw1 = ImageDraw.Draw(im1)
#draw1.line([(xi - minx, yi - miny) for xi, yi in path], fill=(255, 0, 0), width=4)
#draw1.line([(xi - minx, yi - miny) for xi, yi in zip(*out)], fill=(0, 255, 0))
#for ((p00, p01), (p10, p11), (p20, p21), (p30, p31)) in quads:
# draw1.polygon(
# [
# (p00 - minx, p01 - miny),
# (p10 - minx, p11 - miny),
# (p20 - minx, p21 - miny),
# (p30 - minx, p31 - miny),
# ]
# )
#draw1.polygon([(xi - minx, yi - miny) for xi, yi in polygon], outline=(0, 0, 255))
#im1.save("out2.png")
#data = []
#for i, (off, h, (p0, p1, p2, p3)) in enumerate(zip(offs, heights, quads)):
# data.append(
# (
# (
# 0,
# int(height - offs[i] - heights[i]),
# int(width),
# int(height - offs[i]),
# ),
# (
# p0[0] - minx,
# p0[1] - miny,
# p1[0] - minx,
# p1[1] - miny,
# p2[0] - minx,
# p2[1] - miny,
# p3[0] - minx,
# p3[1] - miny,
# ),
# )
# )
#im_out = im2.transform(
# (int(width), int(height)),
# Image.MESH,
# data,
# Image.BICUBIC,
#)
#im_out.save("out.png")
#im_out.save("out.jpg", quality=95)
#return True
if __name__ == "__main__": if __name__ == "__main__":
main() x = []
y = []
import sys
if len(sys.argv) != 5:
print("usage: %s data.csv width smoothing N" % sys.argv[0])
print("")
print(
" data.csv whitespace delimited lon/lat pairs of points along the path"
)
print(" width width of the resulting map in degrees")
print(
" smoothing curve smoothing from 0 (exact fit) to higher values (looser fit)"
)
print(" N amount of quads to split the path into")
print("")
print(" example usage:")
print(" %s Weser-Radweg-Hauptroute.csv 0.286 6 20" % sys.argv[0])
exit(1)
with open(sys.argv[1]) as f:
for l in f:
a, b = l.split()
# apply mercator projection
b = lat2y(float(b))
x.append(float(a))
y.append(b)
width = float(sys.argv[2])
smoothing = float(sys.argv[3])
N = int(sys.argv[4])
main(x, y, width, smoothing, N)
# for smoothing in [1,2,4,8,12]:
# for subdiv in range(10,30):
# if main(x,y,width,smoothing,subdiv):
# print width,smoothing,subdiv