#!/usr/bin/env python import sys import math from math import sqrt import numpy as np import matplotlib.pyplot as plt from scipy import interpolate from itertools import tee, izip from matplotlib.patches import Polygon from matplotlib.collections import PatchCollection import matplotlib from PIL import Image def y2lat(a): return 180.0/math.pi*(2.0*math.atan(math.exp(a*math.pi/180.0))-math.pi/2.0) def lat2y(a): return 180.0/math.pi*math.log(math.tan(math.pi/4.0+a*(math.pi/180.0)/2.0)) def pairwise(iterable): "s -> (s0,s1), (s1,s2), (s2,s3), ..." a, b = tee(iterable, 2) next(b, None) return izip(a, b) def triplewise(iterable): "s -> (s0,s1,s2), (s1,s2,s3), (s2,s3,s4), ..." a,b,c = tee(iterable, 3) next(b, None) next(c, None) next(c, None) return izip(a,b,c) # using barycentric coordinates def ptInTriangle(p, p0, p1, p2): A = 0.5 * (-p1[1] * p2[0] + p0[1] * (-p1[0] + p2[0]) + p0[0] * (p1[1] - p2[1]) + p1[0] * p2[1]); sign = -1 if A < 0 else 1; s = (p0[1] * p2[0] - p0[0] * p2[1] + (p2[1] - p0[1]) * p[0] + (p0[0] - p2[0]) * p[1]) * sign; t = (p0[0] * p1[1] - p0[1] * p1[0] + (p0[1] - p1[1]) * p[0] + (p1[0] - p0[0]) * p[1]) * sign; return s >= 0 and t >= 0 and (s + t) <= 2 * A * sign; def getxing(p0, p1, p2, p3): ux = p1[0]-p0[0] uy = p1[1]-p0[1] vx = p2[0]-p3[0] vy = p2[1]-p3[1] # get multiplicity of u at which u meets v a = vy*ux-vx*uy if a == 0: # lines are parallel and never meet return None s = (vy*(p3[0]-p0[0])+vx*(p0[1]-p3[1]))/a if 0.0 < s < 1.0: return (p0[0]+s*ux, p0[1]+s*uy) else: return None # the line p0-p1 is the upper normal to the path # the line p2-p3 is the lower normal to the path # # | | | # p0--------|--------p1 # | | | # | | | # p3--------|--------p2 # | | | def ptInQuadrilateral(p, p0, p1, p2, p3): # it might be that the two normals cross at some point # in that case the two triangles are created differently cross = getxing(p0, p1, p2, p3) if cross: return ptInTriangle(p, p0, cross, p3) or ptInTriangle(p, p2, cross, p1) else: return ptInTriangle(p, p0, p1, p2) or ptInTriangle(p, p2, p3, p0) def get_st(Ax,Ay,Bx,By,Cx,Cy,Dx,Dy,Xx,Xy): d = Bx-Ax-Cx+Dx e = By-Ay-Cy+Dy l = Dx-Ax g = Dy-Ay h = Cx-Dx m = Cy-Dy i = Xx-Dx j = Xy-Dy n = g*h-m*l # calculation for s a1 = m*d-h*e b1 = n-j*d+i*e c1 = l*j-g*i # calculation for t a2 = g*d-l*e b2 = n+j*d-i*e c2 = h*j-m*i s = [] if a1 == 0: s.append(-c1/b1) else: r1 = b1*b1-4*a1*c1 if r1 >= 0: r11 = (-b1+sqrt(r1))/(2*a1) if -0.0000000001 <= r11 <= 1.0000000001: s.append(r11) r12 = (-b1-sqrt(r1))/(2*a1) if -0.0000000001 <= r12 <= 1.0000000001: s.append(r12) t = [] if a2 == 0: t.append(-c2/b2) else: r2 = b2*b2-4*a2*c2 if r2 >= 0: r21 = (-b2+sqrt(r2))/(2*a2) if -0.0000000001 <= r21 <= 1.0000000001: t.append(r21) r22 = (-b2-sqrt(r2))/(2*a2) if -0.0000000001 <= r22 <= 1.0000000001: t.append(r22) if not s or not t: return [],[] if len(s) == 1 and len(t) == 2: s = [s[0],s[0]] if len(s) == 2 and len(t) == 1: t = [t[0],t[0]] return s, t def main(x,y,width,smoothing,subdiv): halfwidth = width/2.0 tck,u = interpolate.splprep([x,y],s=smoothing) unew = np.linspace(0,1.0,subdiv+1) out = interpolate.splev(unew,tck) heights = [] offs = [] height = 0.0 for (ax,ay),(bx,by) in pairwise(zip(*out)): s = ax-bx t = ay-by l = sqrt(s*s+t*t) offs.append(height) height += l heights.append(l) # the border of the first segment is just perpendicular to the path cx = -out[1][1]+out[1][0] cy = out[0][1]-out[0][0] cl = sqrt(cx*cx+cy*cy)/halfwidth dx = out[1][1]-out[1][0] dy = -out[0][1]+out[0][0] dl = sqrt(dx*dx+dy*dy)/halfwidth px = [out[0][0]+cx/cl] py = [out[1][0]+cy/cl] qx = [out[0][0]+dx/dl] qy = [out[1][0]+dy/dl] for (ubx,uby),(ux,uy),(uax,uay) in triplewise(zip(*out)): # get adjacent line segment vectors ax = ux-ubx ay = uy-uby bx = uax-ux by = uay-uy # normalize length al = sqrt(ax*ax+ay*ay) bl = sqrt(bx*bx+by*by) ax = ax/al ay = ay/al bx = bx/bl by = by/bl # get vector perpendicular to sum cx = -ay-by cy = ax+bx cl = sqrt(cx*cx+cy*cy)/halfwidth px.append(ux+cx/cl) py.append(uy+cy/cl) # and in the other direction dx = ay+by dy = -ax-bx dl = sqrt(dx*dx+dy*dy)/halfwidth qx.append(ux+dx/dl) qy.append(uy+dy/dl) # the border of the last segment is just perpendicular to the path cx = -out[1][-1]+out[1][-2] cy = out[0][-1]-out[0][-2] cl = sqrt(cx*cx+cy*cy)/halfwidth dx = out[1][-1]-out[1][-2] dy = -out[0][-1]+out[0][-2] dl = sqrt(dx*dx+dy*dy)/halfwidth px.append(out[0][-1]+cx/cl) py.append(out[1][-1]+cy/cl) qx.append(out[0][-1]+dx/dl) qy.append(out[1][-1]+dy/dl) quads = [] patches = [] for (p3x,p3y,p2x,p2y),(p0x,p0y,p1x,p1y) in pairwise(zip(px,py,qx,qy)): quads.append(((p0x,p0y),(p1x,p1y),(p2x,p2y),(p3x,p3y))) polygon = Polygon(((p0x,p0y),(p1x,p1y),(p2x,p2y),(p3x,p3y)), True) patches.append(polygon) containingquad = [] for pt in zip(x,y): # for each point, find the quadrilateral that contains it found = [] for i,(p0,p1,p2,p3) in enumerate(quads): if ptInQuadrilateral(pt,p0,p1,p2,p3): found.append(i) if found: if len(found) > 1: print "point found in two quads" return None containingquad.append(found[0]) else: containingquad.append(None) # check if the only points for which no quad could be found are in the # beginning or in the end # find the first missing ones: for i,q in enumerate(containingquad): if q != None: break # find the last missing ones for j,q in izip(xrange(len(containingquad)-1, -1, -1), reversed(containingquad)): if q != None: break # remove the first and last missing ones if i != 0 or j != len(containingquad)-1: containingquad = containingquad[i:j+1] x = x[i:j+1] y = y[i:j+1] # check if there are any remaining missing ones: if None in containingquad: print "cannot find quad for point" return None for off,h in zip(offs,heights): targetquad = ((0,off+h),(width,off+h),(width,off),(0,off)) patches.append(Polygon(targetquad,True)) tx = [] ty = [] assert len(containingquad) == len(x) == len(y) assert len(out[0]) == len(out[1]) == len(px) == len(py) == len(qx) == len(qy) == len(quads)+1 == len(heights)+1 == len(offs)+1 for (rx,ry),i in zip(zip(x,y),containingquad): if i == None: continue (ax,ay),(bx,by),(cx,cy),(dx,dy) = quads[i] s,t = get_st(ax,ay,bx,by,cx,cy,dx,dy,rx,ry) # if more than one solution, take second # TODO: investigate if this is always the right solution if len(s) != 1 or len(t) != 1: s = s[1] t = t[1] else: s = s[0] t = t[0] u = s*width v = offs[i]+t*heights[i] tx.append(u) ty.append(v) #sx = [] #sy = [] #for ((x1,y1),(x2,y2)),((ax,ay),(bx,by),(cx,cy),(dx,dy)),off,h in zip(pairwise(zip(*out)),quads,offs,heights): # s,t = get_st(ax,ay,bx,by,cx,cy,dx,dy,x1,y1) # if len(s) != 1 or len(t) != 1: # return None # u = s[0]*width # v = off+t[0]*h # sx.append(u) # sy.append(v) # s,t = get_st(ax,ay,bx,by,cx,cy,dx,dy,x2,y2) # if len(s) != 1 or len(t) != 1: # return None # u = s[0]*width # v = off+t[0]*h # sx.append(u) # sy.append(v) im1 = Image.open("out.png") im2 = Image.open("map.png") bbox = [8.4320068359375,51.34090729023285,9.7119140625,53.556626004824615] bbox[1] = lat2y(bbox[1]) bbox[3] = lat2y(bbox[3]) colors = 100*np.random.rand(len(patches)/2)+100*np.random.rand(len(patches)/2) p = PatchCollection(patches, cmap=matplotlib.cm.jet, alpha=0.4) p.set_array(np.array(colors)) plt.figure() plt.axes().set_aspect('equal') #plt.axhspan(0, height, xmin=0, xmax=width) fig, ax = plt.subplots() ax.add_collection(p) ax.set_aspect('equal') plt.imshow(np.asarray(im1),extent=[0,width,0,height]) plt.imshow(np.asarray(im2),extent=[bbox[0],bbox[2],bbox[1],bbox[3]]) plt.plot(x,y,out[0],out[1],px,py,qx,qy,tx,ty) plt.show() iw,ih = im2.size data = [] for i,(off,h,(p0,p1,p2,p3)) in enumerate(zip(offs,heights,quads)): # first, account for the offset of the input image p0 = p0[0]-bbox[0],p0[1]-bbox[1] p1 = p1[0]-bbox[0],p1[1]-bbox[1] p2 = p2[0]-bbox[0],p2[1]-bbox[1] p3 = p3[0]-bbox[0],p3[1]-bbox[1] # PIL expects coordinates in counter clockwise order p1,p3 = p3,p1 # x lon # ----- = ----- # w bbox[2]-bbox[0] # translate to pixel coordinates p0 = (iw*p0[0])/(bbox[2]-bbox[0]),(ih*p0[1])/(bbox[3]-bbox[1]) p1 = (iw*p1[0])/(bbox[2]-bbox[0]),(ih*p1[1])/(bbox[3]-bbox[1]) p2 = (iw*p2[0])/(bbox[2]-bbox[0]),(ih*p2[1])/(bbox[3]-bbox[1]) p3 = (iw*p3[0])/(bbox[2]-bbox[0]),(ih*p3[1])/(bbox[3]-bbox[1]) # PIL starts coordinate system at the upper left corner, swap y coord p0 = int(p0[0]),int(ih-p0[1]) p1 = int(p1[0]),int(ih-p1[1]) p2 = int(p2[0]),int(ih-p2[1]) p3 = int(p3[0]),int(ih-p3[1]) box=(0,int(ih*(height-off-h)/(bbox[3]-bbox[1])), int(iw*width/(bbox[2]-bbox[0])),int(ih*(height-off)/(bbox[3]-bbox[1]))) quad=(p0[0],p0[1],p1[0],p1[1],p2[0],p2[1],p3[0],p3[1]) data.append((box,quad)) im_out = im2.transform((int(iw*width/(bbox[2]-bbox[0])),int(ih*height/(bbox[3]-bbox[1]))),Image.MESH,data,Image.BICUBIC) im_out.save("out.png") return True if __name__ == '__main__': x = [] y = [] with open(sys.argv[1]) as f: for l in f: a,b = l.split() # apply mercator projection b = lat2y(float(b)) x.append(float(a)) y.append(b) width = 2.0/7.0 main(x,y,width,6,20) #for smoothing in [1,2,4,8,12]: # for subdiv in range(10,30): # if main(x,y,width,smoothing,subdiv): # print width,smoothing,subdiv