334 lines
11 KiB
Python
334 lines
11 KiB
Python
#!/usr/bin/env python
|
|
|
|
import sys
|
|
import math
|
|
from math import sqrt
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from scipy import interpolate
|
|
from itertools import tee, izip
|
|
from matplotlib.patches import Polygon
|
|
from matplotlib.collections import PatchCollection
|
|
import matplotlib
|
|
from PIL import Image
|
|
|
|
def y2lat(a):
|
|
return 180.0/math.pi*(2.0*math.atan(math.exp(a*math.pi/180.0))-math.pi/2.0)
|
|
|
|
def lat2y(a):
|
|
return 180.0/math.pi*math.log(math.tan(math.pi/4.0+a*(math.pi/180.0)/2.0))
|
|
|
|
def pairwise(iterable):
|
|
"s -> (s0,s1), (s1,s2), (s2,s3), ..."
|
|
a, b = tee(iterable, 2)
|
|
next(b, None)
|
|
return izip(a, b)
|
|
|
|
def triplewise(iterable):
|
|
"s -> (s0,s1,s2), (s1,s2,s3), (s2,s3,s4), ..."
|
|
a,b,c = tee(iterable, 3)
|
|
next(b, None)
|
|
next(c, None)
|
|
next(c, None)
|
|
return izip(a,b,c)
|
|
|
|
# using barycentric coordinates
|
|
def ptInTriangle(p, p0, p1, p2):
|
|
A = 0.5 * (-p1[1] * p2[0] + p0[1] * (-p1[0] + p2[0]) + p0[0] * (p1[1] - p2[1]) + p1[0] * p2[1]);
|
|
sign = -1 if A < 0 else 1;
|
|
s = (p0[1] * p2[0] - p0[0] * p2[1] + (p2[1] - p0[1]) * p[0] + (p0[0] - p2[0]) * p[1]) * sign;
|
|
t = (p0[0] * p1[1] - p0[1] * p1[0] + (p0[1] - p1[1]) * p[0] + (p1[0] - p0[0]) * p[1]) * sign;
|
|
return s >= 0 and t >= 0 and (s + t) <= 2 * A * sign;
|
|
|
|
def getxing(p0, p1, p2, p3):
|
|
ux = p1[0]-p0[0]
|
|
uy = p1[1]-p0[1]
|
|
vx = p2[0]-p3[0]
|
|
vy = p2[1]-p3[1]
|
|
# get multiplicity of u at which u meets v
|
|
a = vy*ux-vx*uy
|
|
if a == 0:
|
|
# lines are parallel and never meet
|
|
return None
|
|
s = (vy*(p3[0]-p0[0])+vx*(p0[1]-p3[1]))/a
|
|
if 0.0 < s < 1.0:
|
|
return (p0[0]+s*ux, p0[1]+s*uy)
|
|
else:
|
|
return None
|
|
|
|
# the line p0-p1 is the upper normal to the path
|
|
# the line p2-p3 is the lower normal to the path
|
|
#
|
|
# | | |
|
|
# p0--------|--------p1
|
|
# | | |
|
|
# | | |
|
|
# p3--------|--------p2
|
|
# | | |
|
|
def ptInQuadrilateral(p, p0, p1, p2, p3):
|
|
# it might be that the two normals cross at some point
|
|
# in that case the two triangles are created differently
|
|
cross = getxing(p0, p1, p2, p3)
|
|
if cross:
|
|
return ptInTriangle(p, p0, cross, p3) or ptInTriangle(p, p2, cross, p1)
|
|
else:
|
|
return ptInTriangle(p, p0, p1, p2) or ptInTriangle(p, p2, p3, p0)
|
|
|
|
def get_st(Ax,Ay,Bx,By,Cx,Cy,Dx,Dy,Xx,Xy):
|
|
d = Bx-Ax-Cx+Dx
|
|
e = By-Ay-Cy+Dy
|
|
l = Dx-Ax
|
|
g = Dy-Ay
|
|
h = Cx-Dx
|
|
m = Cy-Dy
|
|
i = Xx-Dx
|
|
j = Xy-Dy
|
|
n = g*h-m*l
|
|
# calculation for s
|
|
a1 = m*d-h*e
|
|
b1 = n-j*d+i*e
|
|
c1 = l*j-g*i
|
|
# calculation for t
|
|
a2 = g*d-l*e
|
|
b2 = n+j*d-i*e
|
|
c2 = h*j-m*i
|
|
s = []
|
|
if a1 == 0:
|
|
s.append(-c1/b1)
|
|
else:
|
|
r1 = b1*b1-4*a1*c1
|
|
if r1 >= 0:
|
|
r11 = (-b1+sqrt(r1))/(2*a1)
|
|
if -0.0000000001 <= r11 <= 1.0000000001:
|
|
s.append(r11)
|
|
r12 = (-b1-sqrt(r1))/(2*a1)
|
|
if -0.0000000001 <= r12 <= 1.0000000001:
|
|
s.append(r12)
|
|
t = []
|
|
if a2 == 0:
|
|
t.append(-c2/b2)
|
|
else:
|
|
r2 = b2*b2-4*a2*c2
|
|
if r2 >= 0:
|
|
r21 = (-b2+sqrt(r2))/(2*a2)
|
|
if -0.0000000001 <= r21 <= 1.0000000001:
|
|
t.append(r21)
|
|
r22 = (-b2-sqrt(r2))/(2*a2)
|
|
if -0.0000000001 <= r22 <= 1.0000000001:
|
|
t.append(r22)
|
|
if not s or not t:
|
|
return [],[]
|
|
if len(s) == 1 and len(t) == 2:
|
|
s = [s[0],s[0]]
|
|
if len(s) == 2 and len(t) == 1:
|
|
t = [t[0],t[0]]
|
|
return s, t
|
|
|
|
def main(x,y,width,smoothing,subdiv):
|
|
halfwidth = width/2.0
|
|
tck,u = interpolate.splprep([x,y],s=smoothing)
|
|
unew = np.linspace(0,1.0,subdiv+1)
|
|
out = interpolate.splev(unew,tck)
|
|
heights = []
|
|
offs = []
|
|
height = 0.0
|
|
for (ax,ay),(bx,by) in pairwise(zip(*out)):
|
|
s = ax-bx
|
|
t = ay-by
|
|
l = sqrt(s*s+t*t)
|
|
offs.append(height)
|
|
height += l
|
|
heights.append(l)
|
|
# the border of the first segment is just perpendicular to the path
|
|
cx = -out[1][1]+out[1][0]
|
|
cy = out[0][1]-out[0][0]
|
|
cl = sqrt(cx*cx+cy*cy)/halfwidth
|
|
dx = out[1][1]-out[1][0]
|
|
dy = -out[0][1]+out[0][0]
|
|
dl = sqrt(dx*dx+dy*dy)/halfwidth
|
|
px = [out[0][0]+cx/cl]
|
|
py = [out[1][0]+cy/cl]
|
|
qx = [out[0][0]+dx/dl]
|
|
qy = [out[1][0]+dy/dl]
|
|
for (ubx,uby),(ux,uy),(uax,uay) in triplewise(zip(*out)):
|
|
# get adjacent line segment vectors
|
|
ax = ux-ubx
|
|
ay = uy-uby
|
|
bx = uax-ux
|
|
by = uay-uy
|
|
# normalize length
|
|
al = sqrt(ax*ax+ay*ay)
|
|
bl = sqrt(bx*bx+by*by)
|
|
ax = ax/al
|
|
ay = ay/al
|
|
bx = bx/bl
|
|
by = by/bl
|
|
# get vector perpendicular to sum
|
|
cx = -ay-by
|
|
cy = ax+bx
|
|
cl = sqrt(cx*cx+cy*cy)/halfwidth
|
|
px.append(ux+cx/cl)
|
|
py.append(uy+cy/cl)
|
|
# and in the other direction
|
|
dx = ay+by
|
|
dy = -ax-bx
|
|
dl = sqrt(dx*dx+dy*dy)/halfwidth
|
|
qx.append(ux+dx/dl)
|
|
qy.append(uy+dy/dl)
|
|
# the border of the last segment is just perpendicular to the path
|
|
cx = -out[1][-1]+out[1][-2]
|
|
cy = out[0][-1]-out[0][-2]
|
|
cl = sqrt(cx*cx+cy*cy)/halfwidth
|
|
dx = out[1][-1]-out[1][-2]
|
|
dy = -out[0][-1]+out[0][-2]
|
|
dl = sqrt(dx*dx+dy*dy)/halfwidth
|
|
px.append(out[0][-1]+cx/cl)
|
|
py.append(out[1][-1]+cy/cl)
|
|
qx.append(out[0][-1]+dx/dl)
|
|
qy.append(out[1][-1]+dy/dl)
|
|
quads = []
|
|
patches = []
|
|
for (p3x,p3y,p2x,p2y),(p0x,p0y,p1x,p1y) in pairwise(zip(px,py,qx,qy)):
|
|
quads.append(((p0x,p0y),(p1x,p1y),(p2x,p2y),(p3x,p3y)))
|
|
polygon = Polygon(((p0x,p0y),(p1x,p1y),(p2x,p2y),(p3x,p3y)), True)
|
|
patches.append(polygon)
|
|
containingquad = []
|
|
for pt in zip(x,y):
|
|
# for each point, find the quadrilateral that contains it
|
|
found = []
|
|
for i,(p0,p1,p2,p3) in enumerate(quads):
|
|
if ptInQuadrilateral(pt,p0,p1,p2,p3):
|
|
found.append(i)
|
|
if found:
|
|
if len(found) > 1:
|
|
print "point found in two quads"
|
|
return None
|
|
containingquad.append(found[0])
|
|
else:
|
|
containingquad.append(None)
|
|
# check if the only points for which no quad could be found are in the
|
|
# beginning or in the end
|
|
# find the first missing ones:
|
|
for i,q in enumerate(containingquad):
|
|
if q != None:
|
|
break
|
|
# find the last missing ones
|
|
for j,q in izip(xrange(len(containingquad)-1, -1, -1), reversed(containingquad)):
|
|
if q != None:
|
|
break
|
|
# remove the first and last missing ones
|
|
if i != 0 or j != len(containingquad)-1:
|
|
containingquad = containingquad[i:j+1]
|
|
x = x[i:j+1]
|
|
y = y[i:j+1]
|
|
# check if there are any remaining missing ones:
|
|
if None in containingquad:
|
|
print "cannot find quad for point"
|
|
return None
|
|
for off,h in zip(offs,heights):
|
|
targetquad = ((0,off+h),(width,off+h),(width,off),(0,off))
|
|
patches.append(Polygon(targetquad,True))
|
|
tx = []
|
|
ty = []
|
|
assert len(containingquad) == len(x) == len(y)
|
|
assert len(out[0]) == len(out[1]) == len(px) == len(py) == len(qx) == len(qy) == len(quads)+1 == len(heights)+1 == len(offs)+1
|
|
for (rx,ry),i in zip(zip(x,y),containingquad):
|
|
if i == None:
|
|
continue
|
|
(ax,ay),(bx,by),(cx,cy),(dx,dy) = quads[i]
|
|
s,t = get_st(ax,ay,bx,by,cx,cy,dx,dy,rx,ry)
|
|
# if more than one solution, take second
|
|
# TODO: investigate if this is always the right solution
|
|
if len(s) != 1 or len(t) != 1:
|
|
s = s[1]
|
|
t = t[1]
|
|
else:
|
|
s = s[0]
|
|
t = t[0]
|
|
u = s*width
|
|
v = offs[i]+t*heights[i]
|
|
tx.append(u)
|
|
ty.append(v)
|
|
#sx = []
|
|
#sy = []
|
|
#for ((x1,y1),(x2,y2)),((ax,ay),(bx,by),(cx,cy),(dx,dy)),off,h in zip(pairwise(zip(*out)),quads,offs,heights):
|
|
# s,t = get_st(ax,ay,bx,by,cx,cy,dx,dy,x1,y1)
|
|
# if len(s) != 1 or len(t) != 1:
|
|
# return None
|
|
# u = s[0]*width
|
|
# v = off+t[0]*h
|
|
# sx.append(u)
|
|
# sy.append(v)
|
|
# s,t = get_st(ax,ay,bx,by,cx,cy,dx,dy,x2,y2)
|
|
# if len(s) != 1 or len(t) != 1:
|
|
# return None
|
|
# u = s[0]*width
|
|
# v = off+t[0]*h
|
|
# sx.append(u)
|
|
# sy.append(v)
|
|
im = Image.open("map.png")
|
|
bbox = [8.0419921875,51.25160146817652,10.074462890625,54.03681240523652]
|
|
# apply mercator projection
|
|
bbox[1] = lat2y(bbox[1])
|
|
bbox[3] = lat2y(bbox[3])
|
|
iw,ih = im.size
|
|
data = []
|
|
for i,(off,h,(p0,p1,p2,p3)) in enumerate(zip(offs,heights,quads)):
|
|
# first, account for the offset of the input image
|
|
p0 = p0[0]-bbox[0],p0[1]-bbox[1]
|
|
p1 = p1[0]-bbox[0],p1[1]-bbox[1]
|
|
p2 = p2[0]-bbox[0],p2[1]-bbox[1]
|
|
p3 = p3[0]-bbox[0],p3[1]-bbox[1]
|
|
# PIL expects coordinates in counter clockwise order
|
|
p1,p3 = p3,p1
|
|
# x lon
|
|
# ----- = -----
|
|
# w bbox[2]-bbox[0]
|
|
# translate to pixel coordinates
|
|
p0 = (iw*p0[0])/(bbox[2]-bbox[0]),(ih*p0[1])/(bbox[3]-bbox[1])
|
|
p1 = (iw*p1[0])/(bbox[2]-bbox[0]),(ih*p1[1])/(bbox[3]-bbox[1])
|
|
p2 = (iw*p2[0])/(bbox[2]-bbox[0]),(ih*p2[1])/(bbox[3]-bbox[1])
|
|
p3 = (iw*p3[0])/(bbox[2]-bbox[0]),(ih*p3[1])/(bbox[3]-bbox[1])
|
|
# PIL starts coordinate system at the upper left corner, swap y coord
|
|
p0 = int(p0[0]),int(ih-p0[1])
|
|
p1 = int(p1[0]),int(ih-p1[1])
|
|
p2 = int(p2[0]),int(ih-p2[1])
|
|
p3 = int(p3[0]),int(ih-p3[1])
|
|
box=(0,int(ih*(height-off-h)/(bbox[3]-bbox[1])),
|
|
int(iw*width/(bbox[2]-bbox[0])),int(ih*(height-off)/(bbox[3]-bbox[1])))
|
|
quad=(p0[0],p0[1],p1[0],p1[1],p2[0],p2[1],p3[0],p3[1])
|
|
data.append((box,quad))
|
|
im_out = im.transform((int(iw*width/(bbox[2]-bbox[0])),int(ih*height/(bbox[3]-bbox[1]))),Image.MESH,data,Image.BICUBIC)
|
|
im_out.save("out.png")
|
|
np.random.seed(seed=0)
|
|
colors = 100*np.random.rand(len(patches)/2)+100*np.random.rand(len(patches)/2)
|
|
p = PatchCollection(patches, cmap=matplotlib.cm.jet, alpha=0.4)
|
|
p.set_array(np.array(colors))
|
|
plt.figure()
|
|
plt.axes().set_aspect('equal')
|
|
#plt.axhspan(0, height, xmin=0, xmax=width)
|
|
fig, ax = plt.subplots()
|
|
ax.add_collection(p)
|
|
ax.set_aspect('equal')
|
|
plt.imshow(np.asarray(im_out),extent=[0,width,0,height])
|
|
plt.imshow(np.asarray(im),extent=[bbox[0],bbox[2],bbox[1],bbox[3]])
|
|
plt.plot(x,y,out[0],out[1],px,py,qx,qy,tx,ty)
|
|
plt.show()
|
|
return True
|
|
|
|
if __name__ == '__main__':
|
|
x = []
|
|
y = []
|
|
with open(sys.argv[1]) as f:
|
|
for l in f:
|
|
a,b = l.split()
|
|
# apply mercator projection
|
|
b = lat2y(float(b))
|
|
x.append(float(a))
|
|
y.append(b)
|
|
width = 2.0/7.0
|
|
main(x,y,width,6,20)
|
|
#for smoothing in [1,2,4,8,12]:
|
|
# for subdiv in range(10,30):
|
|
# if main(x,y,width,smoothing,subdiv):
|
|
# print width,smoothing,subdiv
|