cycles_johnson_abate/cycles_iter.ml

124 lines
4.1 KiB
OCaml
Raw Normal View History

2012-03-01 11:24:54 +00:00
open Graph
open ExtLib
open ExtString
module G = Pack.Digraph
let find_all_cycles_johnson g =
if not G.is_directed then
assert false;
(* stack of nodes in current path *)
let path = Stack.create () in
(* vertex: blocked from search *)
let blocked = Hashtbl.create 1023 in
(* graph portions that yield no elementary circuit *)
let b = Hashtbl.create 1023 in
(* list to accumulate the circuits found *)
let result = ref [] in
let rec circuit thisnode startnode component =
let stack_to_list s =
let l = ref [] in
Stack.iter (fun e -> l:= e::!l) s;
!l
in
let rec unblock thisnode =
Printf.eprintf "unblock %d\n" (G.V.label thisnode);
if Hashtbl.find blocked thisnode then begin
Hashtbl.replace blocked thisnode false;
List.iter unblock (Hashtbl.find b thisnode);
Hashtbl.replace b thisnode []
end
in
let closed = ref false in
Stack.push thisnode path;
Hashtbl.replace blocked thisnode true;
G.iter_succ (fun nextnode ->
Printf.eprintf "startnode %d\n" (G.V.label startnode);
Printf.eprintf "nextnode %d\n" (G.V.label nextnode);
if G.V.equal nextnode startnode then begin
result := ((stack_to_list path))::!result;
closed := true;
Printf.eprintf "closed = true 1\n";
end else begin if not(Hashtbl.find blocked nextnode) then
if circuit nextnode startnode component then begin
closed := true;
Printf.eprintf "closed = true 2\n";
end
end
) component thisnode;
if !closed then begin
Printf.eprintf "closed = true 3\n";
unblock thisnode
end
else
G.iter_succ (fun nextnode ->
if List.mem thisnode (Hashtbl.find b nextnode) then
Hashtbl.replace b nextnode (thisnode::(Hashtbl.find b nextnode))
) component thisnode;
ignore(Stack.pop path);
!closed
in
let module SV = Set.Make(G.V) in
let subgraph_ g s =
let sg = G.create () in
G.iter_edges (fun v1 v2 ->
if SV.mem v1 s then G.add_vertex sg v1;
if SV.mem v2 s then G.add_vertex sg v2;
if SV.mem v1 s && SV.mem v2 s then
G.add_edge sg v1 v2
) g;
sg
in
(* Johnson's algorithm requires some ordering of the nodes.
* They might not be sortable so we assign an arbitrary ordering.
*)
let to_set l = List.fold_right SV.add l SV.empty in
let vertex_set = G.fold_vertex SV.add g SV.empty in
let part s w = snd(SV.partition (fun e -> e >= w) s) in
let print_set s =
String.join " " (List.map (fun e ->
string_of_int (G.V.label e)
) (SV.elements s))
in
Printf.eprintf "inital set %s\n" (print_set vertex_set);
SV.iter (fun s ->
(* Build the subgraph induced by s and following nodes in the ordering *)
Printf.eprintf "selected element %d\n" (G.V.label s);
let subset = SV.add s (part vertex_set s) in
Printf.eprintf "subset %s\n" (print_set subset);
let subgraph = subgraph_ g subset in
if G.nb_edges subgraph > 0 then begin
let scc = G.Components.scc_list subgraph in
(* Find the strongly connected component in the subgraph
* that contains the least node according to the ordering *)
let minnode = SV.min_elt subset in
Printf.eprintf "minnode %d\n" (G.V.label minnode);
let mincomp = List.find (fun l -> List.mem minnode l) scc in
Printf.eprintf "mincomp %s\n" (print_set ((to_set mincomp)));
(* smallest node in the component according to the ordering *)
let startnode = minnode in
let component = subgraph_ subgraph (to_set mincomp) in
G.dot_output component (Printf.sprintf "test-component%d.dot" (G.V.label s));
G.iter_vertex (fun node ->
Hashtbl.add blocked node false;
Hashtbl.add b node [];
) component;
ignore(circuit startnode startnode component);
end else
Printf.eprintf "No edges to consider\n"
) vertex_set;
!result
;;
let g = G.Rand.graph ~v:5 ~e:10 () in
G.dot_output g "test.dot";
let ll = find_all_cycles_johnson g in
List.iter (fun path ->
Printf.printf "path : %s\n"
(String.join " " (List.map (fun e -> string_of_int (G.V.label e)) path))
) ll