You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

366 lines
13 KiB
Python

10 years ago
#!/usr/bin/env python
10 years ago
#
3 years ago
# Copyright (C) 2014 - 2021 Johannes Schauer Marin Rodrigues <josch@mister-muffin.de>
10 years ago
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
10 years ago
10 years ago
import math
10 years ago
from math import sqrt
import numpy as np
import matplotlib.pyplot as plt
from scipy import interpolate
from itertools import tee, izip
from matplotlib.patches import Polygon
from matplotlib.collections import PatchCollection
import matplotlib
10 years ago
from PIL import Image
def y2lat(a):
return 180.0/math.pi*(2.0*math.atan(math.exp(a*math.pi/180.0))-math.pi/2.0)
def lat2y(a):
return 180.0/math.pi*math.log(math.tan(math.pi/4.0+a*(math.pi/180.0)/2.0))
10 years ago
def pairwise(iterable):
"s -> (s0,s1), (s1,s2), (s2,s3), ..."
a, b = tee(iterable, 2)
next(b, None)
return izip(a, b)
def triplewise(iterable):
"s -> (s0,s1,s2), (s1,s2,s3), (s2,s3,s4), ..."
a,b,c = tee(iterable, 3)
next(b, None)
next(c, None)
next(c, None)
return izip(a,b,c)
# using barycentric coordinates
def ptInTriangle(p, p0, p1, p2):
A = 0.5 * (-p1[1] * p2[0] + p0[1] * (-p1[0] + p2[0]) + p0[0] * (p1[1] - p2[1]) + p1[0] * p2[1]);
sign = -1 if A < 0 else 1;
s = (p0[1] * p2[0] - p0[0] * p2[1] + (p2[1] - p0[1]) * p[0] + (p0[0] - p2[0]) * p[1]) * sign;
t = (p0[0] * p1[1] - p0[1] * p1[0] + (p0[1] - p1[1]) * p[0] + (p1[0] - p0[0]) * p[1]) * sign;
return s >= 0 and t >= 0 and (s + t) <= 2 * A * sign;
def getxing(p0, p1, p2, p3):
ux = p1[0]-p0[0]
uy = p1[1]-p0[1]
vx = p2[0]-p3[0]
vy = p2[1]-p3[1]
# get multiplicity of u at which u meets v
a = vy*ux-vx*uy
if a == 0:
# lines are parallel and never meet
return None
s = (vy*(p3[0]-p0[0])+vx*(p0[1]-p3[1]))/a
10 years ago
if 0.0 < s < 1.0:
10 years ago
return (p0[0]+s*ux, p0[1]+s*uy)
else:
return None
# the line p0-p1 is the upper normal to the path
# the line p2-p3 is the lower normal to the path
#
# | | |
# p0--------|--------p1
# | | |
# | | |
# p3--------|--------p2
# | | |
def ptInQuadrilateral(p, p0, p1, p2, p3):
# it might be that the two normals cross at some point
# in that case the two triangles are created differently
cross = getxing(p0, p1, p2, p3)
10 years ago
if cross:
return ptInTriangle(p, p0, cross, p3) or ptInTriangle(p, p2, cross, p1)
else:
return ptInTriangle(p, p0, p1, p2) or ptInTriangle(p, p2, p3, p0)
10 years ago
10 years ago
def get_st(Ax,Ay,Bx,By,Cx,Cy,Dx,Dy,Xx,Xy):
d = Bx-Ax-Cx+Dx
e = By-Ay-Cy+Dy
l = Dx-Ax
g = Dy-Ay
h = Cx-Dx
m = Cy-Dy
i = Xx-Dx
j = Xy-Dy
n = g*h-m*l
# calculation for s
a1 = m*d-h*e
b1 = n-j*d+i*e
c1 = l*j-g*i
# calculation for t
a2 = g*d-l*e
b2 = n+j*d-i*e
c2 = h*j-m*i
s = []
if a1 == 0:
s.append(-c1/b1)
else:
r1 = b1*b1-4*a1*c1
if r1 >= 0:
r11 = (-b1+sqrt(r1))/(2*a1)
if -0.0000000001 <= r11 <= 1.0000000001:
s.append(r11)
r12 = (-b1-sqrt(r1))/(2*a1)
if -0.0000000001 <= r12 <= 1.0000000001:
s.append(r12)
t = []
if a2 == 0:
t.append(-c2/b2)
else:
r2 = b2*b2-4*a2*c2
if r2 >= 0:
r21 = (-b2+sqrt(r2))/(2*a2)
if -0.0000000001 <= r21 <= 1.0000000001:
t.append(r21)
r22 = (-b2-sqrt(r2))/(2*a2)
if -0.0000000001 <= r22 <= 1.0000000001:
t.append(r22)
if not s or not t:
10 years ago
return [],[]
10 years ago
if len(s) == 1 and len(t) == 2:
s = [s[0],s[0]]
if len(s) == 2 and len(t) == 1:
t = [t[0],t[0]]
return s, t
10 years ago
def main(x,y,width,smoothing,subdiv):
10 years ago
halfwidth = width/2.0
10 years ago
tck,u = interpolate.splprep([x,y],s=smoothing)
unew = np.linspace(0,1.0,subdiv+1)
10 years ago
out = interpolate.splev(unew,tck)
heights = []
offs = []
height = 0.0
for (ax,ay),(bx,by) in pairwise(zip(*out)):
s = ax-bx
t = ay-by
l = sqrt(s*s+t*t)
offs.append(height)
height += l
heights.append(l)
# the border of the first segment is just perpendicular to the path
cx = -out[1][1]+out[1][0]
cy = out[0][1]-out[0][0]
cl = sqrt(cx*cx+cy*cy)/halfwidth
dx = out[1][1]-out[1][0]
dy = -out[0][1]+out[0][0]
dl = sqrt(dx*dx+dy*dy)/halfwidth
px = [out[0][0]+cx/cl]
py = [out[1][0]+cy/cl]
qx = [out[0][0]+dx/dl]
qy = [out[1][0]+dy/dl]
for (ubx,uby),(ux,uy),(uax,uay) in triplewise(zip(*out)):
# get adjacent line segment vectors
ax = ux-ubx
ay = uy-uby
bx = uax-ux
by = uay-uy
# normalize length
al = sqrt(ax*ax+ay*ay)
bl = sqrt(bx*bx+by*by)
ax = ax/al
ay = ay/al
bx = bx/bl
by = by/bl
# get vector perpendicular to sum
cx = -ay-by
cy = ax+bx
cl = sqrt(cx*cx+cy*cy)/halfwidth
px.append(ux+cx/cl)
py.append(uy+cy/cl)
# and in the other direction
dx = ay+by
dy = -ax-bx
dl = sqrt(dx*dx+dy*dy)/halfwidth
qx.append(ux+dx/dl)
qy.append(uy+dy/dl)
# the border of the last segment is just perpendicular to the path
cx = -out[1][-1]+out[1][-2]
cy = out[0][-1]-out[0][-2]
cl = sqrt(cx*cx+cy*cy)/halfwidth
dx = out[1][-1]-out[1][-2]
dy = -out[0][-1]+out[0][-2]
dl = sqrt(dx*dx+dy*dy)/halfwidth
px.append(out[0][-1]+cx/cl)
py.append(out[1][-1]+cy/cl)
qx.append(out[0][-1]+dx/dl)
qy.append(out[1][-1]+dy/dl)
quads = []
patches = []
10 years ago
for (p3x,p3y,p2x,p2y),(p0x,p0y,p1x,p1y) in pairwise(zip(px,py,qx,qy)):
quads.append(((p0x,p0y),(p1x,p1y),(p2x,p2y),(p3x,p3y)))
polygon = Polygon(((p0x,p0y),(p1x,p1y),(p2x,p2y),(p3x,p3y)), True)
patches.append(polygon)
10 years ago
containingquad = []
for pt in zip(x,y):
# for each point, find the quadrilateral that contains it
found = []
10 years ago
for i,(p0,p1,p2,p3) in enumerate(quads):
if ptInQuadrilateral(pt,p0,p1,p2,p3):
found.append(i)
10 years ago
if found:
10 years ago
if len(found) > 1:
print "point found in two quads"
return None
containingquad.append(found[0])
10 years ago
else:
containingquad.append(None)
10 years ago
# check if the only points for which no quad could be found are in the
# beginning or in the end
# find the first missing ones:
for i,q in enumerate(containingquad):
if q != None:
break
# find the last missing ones
for j,q in izip(xrange(len(containingquad)-1, -1, -1), reversed(containingquad)):
if q != None:
break
# remove the first and last missing ones
if i != 0 or j != len(containingquad)-1:
containingquad = containingquad[i:j+1]
x = x[i:j+1]
y = y[i:j+1]
# check if there are any remaining missing ones:
if None in containingquad:
print "cannot find quad for point"
return None
for off,h in zip(offs,heights):
10 years ago
targetquad = ((0,off+h),(width,off+h),(width,off),(0,off))
patches.append(Polygon(targetquad,True))
10 years ago
tx = []
ty = []
assert len(containingquad) == len(x) == len(y)
10 years ago
assert len(out[0]) == len(out[1]) == len(px) == len(py) == len(qx) == len(qy) == len(quads)+1 == len(heights)+1 == len(offs)+1
for (rx,ry),i in zip(zip(x,y),containingquad):
if i == None:
10 years ago
continue
10 years ago
(ax,ay),(bx,by),(cx,cy),(dx,dy) = quads[i]
s,t = get_st(ax,ay,bx,by,cx,cy,dx,dy,rx,ry)
# if more than one solution, take second
# TODO: investigate if this is always the right solution
10 years ago
if len(s) != 1 or len(t) != 1:
10 years ago
s = s[1]
t = t[1]
else:
s = s[0]
t = t[0]
u = s*width
v = offs[i]+t*heights[i]
tx.append(u)
ty.append(v)
#sx = []
#sy = []
#for ((x1,y1),(x2,y2)),((ax,ay),(bx,by),(cx,cy),(dx,dy)),off,h in zip(pairwise(zip(*out)),quads,offs,heights):
# s,t = get_st(ax,ay,bx,by,cx,cy,dx,dy,x1,y1)
# if len(s) != 1 or len(t) != 1:
# return None
# u = s[0]*width
# v = off+t[0]*h
# sx.append(u)
# sy.append(v)
# s,t = get_st(ax,ay,bx,by,cx,cy,dx,dy,x2,y2)
# if len(s) != 1 or len(t) != 1:
# return None
# u = s[0]*width
# v = off+t[0]*h
# sx.append(u)
# sy.append(v)
# create map with
# python -c 'import logging; logging.basicConfig(level=logging.DEBUG); from landez import ImageExporter; ie = ImageExporter(tiles_url="http://{s}.tile.opencyclemap.org/cycle/{z}/{x}/{y}.png"); ie.export_image(bbox=(8.0419921875,51.25160146817652,10.074462890625,54.03681240523652), zoomlevel=14, imagepath="image.png")'
10 years ago
im = Image.open("map.png")
bbox = [8.0419921875,51.25160146817652,10.074462890625,54.03681240523652]
# apply mercator projection
10 years ago
bbox[1] = lat2y(bbox[1])
bbox[3] = lat2y(bbox[3])
10 years ago
iw,ih = im.size
10 years ago
data = []
for i,(off,h,(p0,p1,p2,p3)) in enumerate(zip(offs,heights,quads)):
# first, account for the offset of the input image
p0 = p0[0]-bbox[0],p0[1]-bbox[1]
p1 = p1[0]-bbox[0],p1[1]-bbox[1]
p2 = p2[0]-bbox[0],p2[1]-bbox[1]
p3 = p3[0]-bbox[0],p3[1]-bbox[1]
# PIL expects coordinates in counter clockwise order
p1,p3 = p3,p1
# x lon
# ----- = -----
# w bbox[2]-bbox[0]
# translate to pixel coordinates
p0 = (iw*p0[0])/(bbox[2]-bbox[0]),(ih*p0[1])/(bbox[3]-bbox[1])
p1 = (iw*p1[0])/(bbox[2]-bbox[0]),(ih*p1[1])/(bbox[3]-bbox[1])
p2 = (iw*p2[0])/(bbox[2]-bbox[0]),(ih*p2[1])/(bbox[3]-bbox[1])
p3 = (iw*p3[0])/(bbox[2]-bbox[0]),(ih*p3[1])/(bbox[3]-bbox[1])
# PIL starts coordinate system at the upper left corner, swap y coord
p0 = int(p0[0]),int(ih-p0[1])
p1 = int(p1[0]),int(ih-p1[1])
p2 = int(p2[0]),int(ih-p2[1])
p3 = int(p3[0]),int(ih-p3[1])
box=(0,int(ih*(height-off-h)/(bbox[3]-bbox[1])),
int(iw*width/(bbox[2]-bbox[0])),int(ih*(height-off)/(bbox[3]-bbox[1])))
quad=(p0[0],p0[1],p1[0],p1[1],p2[0],p2[1],p3[0],p3[1])
data.append((box,quad))
10 years ago
im_out = im.transform((int(iw*width/(bbox[2]-bbox[0])),int(ih*height/(bbox[3]-bbox[1]))),Image.MESH,data,Image.BICUBIC)
10 years ago
im_out.save("out.png")
#np.random.seed(seed=0)
#colors = 100*np.random.rand(len(patches)/2)+100*np.random.rand(len(patches)/2)
#p = PatchCollection(patches, cmap=matplotlib.cm.jet, alpha=0.4)
#p.set_array(np.array(colors))
#plt.figure()
#plt.axes().set_aspect('equal')
##plt.axhspan(0, height, xmin=0, xmax=width)
#fig, ax = plt.subplots()
##ax.add_collection(p)
#ax.set_aspect('equal')
#plt.axis((0,width,0,height))
#plt.imshow(np.asarray(im_out),extent=[0,width,0,height])
#plt.imshow(np.asarray(im),extent=[bbox[0],bbox[2],bbox[1],bbox[3]])
#plt.plot(x,y,out[0],out[1],px,py,qx,qy,tx,ty)
#plt.show()
10 years ago
return True
10 years ago
if __name__ == '__main__':
10 years ago
x = []
y = []
import sys
if len(sys.argv) != 5:
print "usage: %s data.csv width smoothing N"%sys.argv[0]
print ""
print " data.csv whitespace delimited lon/lat pairs of points along the path"
print " width width of the resulting map in degrees"
print " smoothing curve smoothing from 0 (exact fit) to higher values (looser fit)"
print " N amount of quads to split the path into"
print ""
print " example usage:"
print " %s Weser-Radweg-Hauptroute.csv 0.286 6 20"%sys.argv[0]
exit(1)
10 years ago
with open(sys.argv[1]) as f:
for l in f:
a,b = l.split()
# apply mercator projection
b = lat2y(float(b))
x.append(float(a))
y.append(b)
width = float(sys.argv[2])
smoothing = float(sys.argv[3])
N = int(sys.argv[4])
main(x,y,width,smoothing,N)
10 years ago
#for smoothing in [1,2,4,8,12]:
# for subdiv in range(10,30):
# if main(x,y,width,smoothing,subdiv):
# print width,smoothing,subdiv